Simple measures of ozone depletion in the polar stratosphere

Article, Other literature type English OPEN
Müller , R. ; Grooß , J.-U. ; Lemmen , C. ; Heinze , D. ; Dameris , M. ; Bodeker , G. (2007)
  • Publisher: European Geosciences Union
  • Journal: Atmospheric Chemistry and Physics (issn: 1680-7316, eissn: 1680-7324)
  • Related identifiers: doi: 10.5194/acp-8-251-2008, doi: 10.5194/acpd-7-9829-2007
  • Subject: Chemistry | [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere | QD1-999 | Physics | J | QC1-999
    • ddc: ddc:550

International audience; We investigate the extent to which commonly considered quantities, based on total column ozone observations and simulations, are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO) and to assess the performance of chemistry-climate models. The most commonly considered quantity is monthly mean column ozone poleward of a latitude of 63° in spring. For the Arctic, these monthly means were found to be insensitive to the exact choice of the latitude threshold, unlike the Antarctic where greater sensitivity was found. Choosing a threshold based on the location of the transport barrier at the vortex boundary instead of geometric latitude led to a roughly similar year-to-year variability of the monthly means, but in particular years deviations of several tens of Dobson units occurred. Moreover, the minimum of daily total ozone minima poleward of a particular latitude, another popular measure, is debatable, insofar as it relies on one single measurement or model grid point. For Arctic conditions, this minimum value occurred often in air <i>outside</i> polar vortex, both in the observations and in a chemistry-climate model. As a result, we recommend that the minimum of daily minima no longer be used when comparing polar ozone loss in observations and models. As a possible alternative, we suggest considering the minimum of daily average total ozone poleward of a particular equivalent latitude (or in the vortex) in spring. This definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex breakup on ozone loss measures. However, compact relations of such simple measures with meteorological quantities that describe the potential for polar heterogeneous chlorine activation and thus ozone loss were not found. Therefore, we argue that where possible, more sophisticated measures of chemical polar ozone loss that include additional information to disentangle the impact of transport and chemistry on ozone, should be employed.
  • References (40)
    40 references, page 1 of 4

    Austin, J., Shindell, D., Beagley, S. R., Bru¨hl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T. G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1-27, 2003, http://www.atmos-chem-phys.net/3/1/2003/. 9831, 9832, 9837, 9838

    Bodeker, G., Scott, J., Kreher, K., and McKenzie, R.: Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978- 1998, J. Geophys. Res., 106, 23 029-23 042, 2001. 9837, 9841 Bodeker, G., Struthers, H., and Connor, B.: Dynamical containment of Antarctic ozone depletion, Geophys. Res. Lett., 29, 1098, doi:10.1029/2001GL014206, 2002. 9837, 9842

    5 Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603-2615, 2005, http://www.atmos-chem-phys.net/5/2603/2005/. 9831, 9832, 9833 Bro¨nnimann, S., Staehelin, J., Farmer, S., Svendby, T., and Svenøe, T.: Total ozone observations prior to the IGY. I: A history, Q. J. R. Meteorol. Soc., 129, 2797-2817, 2003. 9844

    10 Brunner, D., Staehelin, J., Ku¨nsch, H.-R., and Bodeker, G.: A Kalman filter reconstruction of the vertical ozone distribution in an equivalent latitude-potential temperature framework from TOMS/GOME/SBUV total ozone observations, J. Geophys. Res., 111, D12308, doi: 10.1029/2005JD006279, 2006. 9837 Butchart, N. and Remsberg, E. E.: The area of the stratospheric polar vortex as a diagnostic

    15 for tracer transport on an isentropic surface, J. Atmos. Sci., 43, 1319-1339, 1986. 9835 Christensen, T., Knudsen, B. M., Streibel, M., Anderson, S. B., Benesova, A., Braathen, G., Davies, J., Backer, H., Dorokhov, H. D. V., Gerding, M., Gil, M., Henchoz, B., Kelder, H., Kivi, R., Kyro¨, E., Litynska, Moore, D., Peters, G., Skrivankova, P., Stu¨bi, R., Turunen, T., Vaughan, G., Viatte, P., Vik, A. F., von der Gathen, P., and Zaitcev, I.: Vortex-averaged Arctic

    20 ozone depletion in the winter 2002/2003, Atmos. Chem. Phys., 5, 131-138, 2005, http://www.atmos-chem-phys.net/5/131/2005/. 9831 Chubachi, S.: Preliminary result of ozone observations at Syowa station from February 1982 to January 1983, Mem. Natl. Inst. Polar Res. Spec. Issue, 34, 13-19, 1984. 9844 Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt,

    25 C., Stenke, A., Steil, B., Bru¨hl, C., and Giorgetta, M. A.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing, Atmos. Chem. Phys., 5, 2121-2145, 2005, http://www.atmos-chem-phys.net/5/2121/2005/. 9839, 9841, 9861 Dobson, G. M. B.: Forty years' research on atmospheric ozone at Oxford: a history, Appl. Opt.,

    30 7, 387-405, 1968. 9844 Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G. E., Boville, B. A., Bru¨hl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E., Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Nielsen, E., Newman, P. A., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H., Tian, W., and Yoshiki, M.: Assessment of temperature, trace species and ozone in chemistry-climate simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327, 2006. 9831, 9832, 9837, 9839

    Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210, 1985. 9844

    Fusco, A. and Salby, M.: Interannual variations of total ozone and their relationship to variations of planetary wave activity, J. Climate, 12, 1619-1629, 1999. 9845

  • Metrics
    No metrics available
Share - Bookmark