The large-scale impact of climate change to Mississippi flood hazard in New Orleans

Other literature type, Article English OPEN
Driessen, T. L. A. ; Ledden, M. (2013)
  • Publisher: Copernicus Publications on behalf of the TU Delft
  • Journal: (issn: 1996-9465, eissn: 1996-9465)
  • Related identifiers: doi: 10.5194/dwes-6-81-2013
  • Subject: T | Environmental technology. Sanitary engineering | Technology | TD1-1066

The objective of this paper was to describe the impact of climate change on the Mississippi River flood hazard in the New Orleans area. This city has a unique flood risk management challenge, heavily influenced by climate change, since it faces flood hazards from multiple geographical locations (e.g. Lake Pontchartrain and Mississippi River) and multiple sources (hurricane, river, rainfall). Also the low elevation and significant subsidence rate of the Greater New Orleans area poses a high risk and challenges the water management of this urban area. Its vulnerability to flooding became dramatically apparent during Hurricane Katrina in 2005 with huge economic losses and a large number of casualties. <br><br> A SOBEK Rural 1DFLOW model was set up to simulate the general hydrodynamics. This model included the two important spillways that are operated during high flow conditions. A weighted multi-criteria calibration procedure was performed to calibrate the model for high flows. Validation for floods in 2011 indicated a reasonable performance for high flows and clearly demonstrated the influence of the spillways. <br><br> 32 different scenarios were defined which included the relatively large sea level rise and the changing discharge regime that is expected due to climate change. The impact of these scenarios on the water levels near New Orleans were analysed by the hydrodynamic model. Results showed that during high flows New Orleans will not be affected by varying discharge regimes, since the presence of the spillways ensures a constant discharge through the city. In contrary, sea level rise is expected to push water levels upwards. The effect of sea level rise will be noticeable even more than 470 km upstream. Climate change impacts necessitate a more frequent use of the spillways and opening strategies that are based on stages.
  • References (10)

    Barry, J.: Rising Tide - The Great Mississippi Flood of 1927 and How it Changed America, Simon & Schuster, New York, 1998.

    Bourne Jr., J. K.: Gone with the water, National Geographic Magazine, available at: feature5/ (last access: May 2009), 2004.

    Deltares: Design and analysis tools - SOBEK suite, available at: sobek-suite (last access: October 2011), 2010.

    Ericson, J., Vo¨ro¨smarty, C., Dingman, S., Ward, L., and Meybeck, M.: Effective sea-level rise and deltas - Causes of change and human dimension implications, Global Planet. Change, 50, 63- 82, 2006.

    Nash, J. I. and Sutcliffe, I. V.: River flow forecasting through conceptual models: Part I - A discussion of principles, J. Hydrol., 10, 282-290, 1970.

    Nicholls, R. J., Wong, P. P., Burkett, V. R., Codignotto, J. O., Hay, J. E., McLean, R. F., Ragoonaden, S., and Woodroffe, C. D.: Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 315-356, 2007.

    NOAA: Sea Levels Online, available at: http://tidesandcurrents., last access: 28 August 2011.

    U.S. Army Corps of Engineers Washington: Water Resource Policies and Authorities Incorporating Sea-level Change Considerations in Civil Works Programs, available at: http://140.194.76. 129/publications/eng-circulars/ec1165-2-211/entire.pdf (last access: 28 August 2011), 2009.

    U.S. Army Corps of Engineers: Discharge Data; Mississippi River at Tarbert Landing, MS, available at: http://www2.mvn.usace., last access: 11 October 2011.

    USGCRP: Climate change impacts on the United States - The potential consequences of climate variability and change, US Global Change Research Program, 2000.

  • Metrics
    No metrics available
Share - Bookmark