Enrichment in 13C of atmospheric CH4 during the Younger Dryas termination

Article, Other literature type English OPEN
Melton, J. R. ; Schaefer, H. ; Whiticar, M. J. (2012)
  • Publisher: Copernicus Publications
  • Journal: (issn: 1814-9332, eissn: 1814-9332)
  • Related identifiers: doi: 10.5194/cp-8-1177-2012
  • Subject: Environmental pollution | GE1-350 | TD172-193.5 | Environmental sciences | Environmental protection | TD169-171.8

The abrupt warming across the Younger Dryas termination (~11 600 yr before present) was marked by a large increase in the global atmospheric methane mixing ratio. The debate over sources responsible for the rise in methane centers on the roles of global wetlands, marine gas hydrates, and thermokarst lakes. We present a new, higher-precision methane stable carbon isotope ratio (&delta;<sup>13</sup>CH<sub>4</sub>) dataset from ice sampled at Påkitsoq, Greenland that shows distinct <sup>13</sup>C-enrichment associated with this rise. We investigate the validity of this finding in face of known anomalous methane concentrations that occur at Påkitsoq. Comparison with previously published datasets to determine the robustness of our results indicates a similar trend in ice from both an Antarctic ice core and previously published Påkitsoq data measured using four different extraction and analytical techniques. The &delta;<sup>13</sup>CH<sub>4</sub> trend suggests that <sup>13</sup>C-enriched CH<sub>4</sub> sources played an important role in the concentration increase. In a first attempt at quantifying the various contributions from our data, we apply a methane triple mass balance of stable carbon and hydrogen isotope ratios and radiocarbon. The mass balance results suggest biomass burning (42–66% of total methane flux increase) and thermokarst lakes (27–59%) as the dominant contributing sources. Given the high uncertainty and low temporal resolution of the <sup>14</sup>CH<sub>4</sub> dataset used in the triple mass balance, we also performed a mass balance test using just &delta;<sup>13</sup>C and δD. These results further support biomass burning as a dominant source, but do not allow distinguishing of thermokarst lake contributions from boreal wetlands, aerobic plant methane, or termites. Our results in both mass balance tests do not suggest as large a role for tropical wetlands or marine gas hydrates as commonly proposed.
  • References (98)
    98 references, page 1 of 10

    Allan, W., Lowe, D. C., and Cainey, J. M.: Active chlorine in the remote marine boundary layer: Modeling anomalous measurements of δ13C in methane, Geophys. Res. Lett., 28, 3239-3242, 2001.

    Allan, W., Struthers, H., and Lowe, D. C.: Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements, J. Geophys. Res., 112, D04306, doi:10.1029/2006jd007369, 2007.

    Behrens, M., Schmitt, J., Richter, K. U., Bock, M., Richter, U. C., Levin, I., and Fischer, H.: A gas chromatography/combustion/isotope ratio mass spectrometry system for high-precision δ13C measurements of atmospheric methane extracted from ice core samples, Rapid Commun. Mass. Sp., 22, 3261-3269, doi:10.1002/Rcm.3720, 2008.

    Bellisario, L. M., Bubier, J. L., Moore, T. R., and Chanton, J. P.: Controls on CH4 emissions from a northern peatland, Global Biogeochem. Cy., 13, 81-91, 1999.

    Bender, M., Malaize´, B., Orchardo, J., Sowers, T., and Jouzel, J.: High precision correlations of Greenland and Antarctica ice core records over the last 100 kyr in: Global climate change at millenial timescales, edited by: Clark, P. U., Webb, R., and Keigwin, L., American Geophysical Union, Washington, D.C., 149-164, 1999.

    Bock, M., Schmitt, J., Moller, L., Spahni, R., Blunier, T., and Fischer, H.: Hydrogen isotopes preclude marine hydrate CH4 emissions at the onset of Dansgaard-Oeschger events, Science, 328, 1686-1689, doi:10.1126/Science.1187651, 2010.

    Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E.-G., Carouge, C., Langenfelds, R. L., Lathie´re, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C., and White, J. W. C.: Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 443, 439-444, 2006.

    Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.: Fire in the Earth system, Science, 324, 481-484, doi:10.1126/Science.1163886, 2009.

    Brenninkmeijer, C. A. M., Lowe, D. C., Manning, M. R., Sparks, R. J., and vanVelthoven, P. F. J.: The 13C, 14C and 18O isotopic composition of CO, CH4, and CO2 in the higher southern latitudes lower stratosphere, J. Geophys. Res.-Atmos., 100, 26163- 26172, 1995.

    Brook, E. J., Sowers, T., and Orchardo, J.: Rapid variations in atmospheric methane concentration during the past 110,000 years, Science, 273, 1087-1091, 1996.

  • Metrics
    No metrics available