A case study of a sporadic sodium layer observed by the ALOMAR Weber Na lidar

Article, Other literature type English OPEN
Rietveld, Michael T. ; Nesse, H. ; Heinrich, D. ; Williams, B. ; Hoppe, Ulf-Peter ; Stadsnes, J. ; Singer, W. ; Blum, U. ; Sandanger, M. I. ; Trondsen, E. (2008)
  • Publisher: European Geosciences Union (EGU)
  • Journal: (issn: 1432-0576, eissn: 1432-0576)
  • Related identifiers: doi: 10.5194/angeo-26-1071-2008
  • Subject: ionosphere-atmosphere interactions | ion chemistry of the atmosphere | VDP::Mathematics and natural science: 400::Physics: 430::Space and plasma physics: 437 | VDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Rom- og plasmafysikk: 437 | ionospheric irregularities | atmospheric composition and structure | ionosphere | thermosphere-composition and chemistry | ionospheric irregularity

Several possible mechanisms for the production of sporadic sodium layers have been discussed in the literature, but none of them seem to explain all the accumulated observations. The hypotheses range from direct meteoric input, to energetic electron bombardment on meteoric smoke particles, to ion neutralization, to temperature dependent chemistry. The varied instrumentation located on Andøya and near Tromsø in Norway gives us an opportunity to test the different theories applied to high latitude sporadic sodium layers. We use the ALOMAR Weber sodium lidar to monitor the appearance and characteristics of a sporadic sodium layer that was observed on 5 November 2005. We also monitor the temperature to test the hypotheses regarding a temperature dependent mechanism. The EISCAT Tromsø Dynasonde, the ALOMAR/UiO All-sky camera and the SKiYMET meteor radar on Andøya are used to test the suggested relationships of sporadic sodium layers and sporadic E-layers, electron precipitation, and meteor deposition during this event. We find that more than one candidate is eligible to explain our observation of the sporadic sodium layer.
  • References (37)
    37 references, page 1 of 4

    Arnold, K. S. and She, C.-Y.: Metal fluorescence lidar (light detection and ranging) and the middle atmosphere, Contemporary Phys., 44, 35-49, 2003.

    Batista, P. P., Clemesha, B. R., and Simonich, D. M.: Horizontal structures in sporadic sodium layers at 23◦ S, Geophys. Res. Lett, 18, 1027-1030, 1991.

    Batista, P. P., Clemesha, B. R., Batista, I. S., and Simonich, D. M.: Characteristics of the sporadic sodium layers at 23◦ S, J. Geophys. Res., 94, 15 349-15 358, 1989.

    Clemesha, B. R., Kirchhoff, V. W. J. H., Simonich, D. M., and Takahashi, H.: Evidence of an extraterristrial source for the mesospheric sodium layer, Geophys. Res. Lett., 5, 873-876, 1978.

    Clemesha, B. R., Batista, P. P., and Simonich, D. M.: Concerning the origin of enhanced sodium layers, Geophys. Res. Lett., 16, 1267-1270, 1988.

    Clemesha, B. R.: Sporadic neutral metal layers in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys, 57, 725-736, 1995.

    Collins, R. L., Hallinan, T. J., Smith, R. W., and Hernandez, G.: Lidar observations of large high-altitude sporadic Na layer during active aurora, Geophys. Res. Lett., 23, 3655-3658, 1996.

    Cox, R. M. and Plane, J. M. C.: An ion-molecule mechanism for the formation of neutral sporadic Na layers, J. Geophys. Res., 103, 6349-6359, 1998.

    Fricke, K. H. and von Zahn, U.: Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar, J. Atmos. Terr. Phys., 47, 499-512, 1985.

    Gardner, C. S., Tao, X., and Papen, G. C.: Observations of strong wind shears and temperature enhancements during several sporadic Na layer events above Haleakala, Geophys. Res. Lett., 22, 2809-2812, 1995.

  • Metrics
    No metrics available