Fracture et déclenchement des avalanches de plaque : conditions critiques pour la propagation de la fracture

Other literature type, Article, Unknown English OPEN
Gaume , J. ; Van Herwijnen , A. ; Chambon , G. ; Wever , N. ; Schweizer , J. (2017)
  • Publisher: Copernicus
  • Journal: volume 11, pages 217-228 (issn: 1994-0424, eissn: 1994-0424)
  • Related identifiers: doi: 10.5194/tc-11-217-2017
  • Subject: [ SDE ] Environmental Sciences | [ SDU.STU.GL ] Sciences of the Universe [physics]/Earth Sciences/Glaciology | METHODE DES ELEMENTS DISCRETS | AVALANCHE DE PLAQUE | DECLENCHEMENT D'AVALANCHE | discret element method

International audience; The failure of a weak snow layer buried below cohesive slab layers is a necessary, but insufficient, condition for the release of a dry-snow slab avalanche. The size of the crack in the weak layer must also exceed a critical length to propagate across a slope. In contrast to pioneering shear-based approaches, recent developments account for weak layer collapse and allow for better explaining typical observations of remote triggering from low-angle terrain. However, these new models predict a critical length for crack propagation that is almost independent of slope angle, a rather surprising and counterintuitive result. Based on discrete element simulations we propose a new analytical expression for the critical crack length. This new model reconciles past approaches by considering for the first time the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The crack begins to propagate when the stress induced by slab loading and deformation at the crack tip exceeds the limit given by the failure envelope of the weak layer. The model can reproduce crack propagation on low-angle terrain and the decrease in critical length with increasing slope angle as modeled in numerical experiments. The good agreement of our new model with extensive field data and the ease of implementation in the snow cover model SNOWPACK opens a promising prospect for improving avalanche forecasting.
  • References (62)
    62 references, page 1 of 7

    Anderson, T.: Fracture Mechanics: Fundamentals and Applications, CRC Press, 640 pp., 2005.

    Bair, E. H., Simenhois, R., Birkeland, K., and Dozier, J.: A field study on failure of storm snow slab avalanches, Cold Reg. Sci. Technol., 79, 20-28, 2012.

    Bair, E. H., Simenhois, R., van Herwijnen, A., and Birkeland, K.: The influence of edge effects on crack propagation in snow stability tests, The Cryosphere, 8, 1407-1418, doi:10.5194/tc-8- 1407-2014, 2014.

    Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123-145, 2002.

    Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13-22, 1992.

    Chandel, C., Mahajan, P., Srivastava, P., and Kumar, V.: The behaviour of snow under the effect of combined compressive and shear loading, Current Science, 107, 888-894, 2014.

    Chiaia, B., Cornetti, P., and Frigo, B.: Triggering of dry snow slab avalanches: stress versus fracture mechanical approach, Cold Reg. Sci. Technol., 53, 170-178, 2008.

    Cundall, P. A. and Strack, O. D. L.: A discrete numerical model for granular assemblies, Geotechnique, 29, 47-65, 1979.

    Endo, Y., Kominami, Y., and Niwano, S.: Dependence of new-snow density on slope angle, Ann. Glaciol., 26, 14-18, 1998.

    Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., McClung, D., Nishimura, K., Satyawali, P., and Sokratov, S.: The International Classiffcation for Seasonal Snow on the Ground, UNESCO, Paris, HP-VII Technical Documents in Hydrology No. 83, IACS Contribution No. 1, 90 pp., 2009.

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark