Airborne measurements of trace gases and aerosols over the London metropolitan region

Article, Other literature type English OPEN
Mcmeeking , G. R. ; Bart , M. ; Chazette , Patrick ; Haywood , Jim M. ; Hopkins , J. R. ; Mcquaid , J. B. ; Morgan , W. T. ; Raut , Jean-Christophe ; Ryder , C. L. ; Savage , N. ; Turnbull , K. ; Coe , H. (2012)
  • Publisher: European Geosciences Union
  • Journal: (issn: 1680-7324, eissn: 1680-7324)
  • Related identifiers: doi: 10.5194/acp-12-5163-2012, doi: 10.5194/acpd-11-30665-2011
  • Subject: [ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [] | organic aerosol | light-absorption measurements | in-situ measurements | chemical-composition | atmospheric-pollution | Atmospheric Science | optical-properties | mixing state | black carbon measurements | north-western europe | [ SDE.MCG ] Environmental Sciences/Global Changes | mexico-city plateau | /dk/atira/pure/subjectarea/asjc/1900/1902

The Emissions around the M25 motorway (EM25) campaign took place over the megacity of London in the United Kingdom in June 2009 with the aim of characterising trace gas and aerosol composition and properties entering and emitted from the urban region. It featured two mobile platforms, the UK BAe-146 Facility for Airborne Atmospheric Measurements (FAAM) research aircraft and a ground-based mobile lidar van, both travelling in circuits around London, roughly following the path of the M25 motorway circling the city. We present an overview of findings from the project, which took place during typical UK summertime pollution conditions. Emission ratios of volatile organic compounds (VOCs) to acetylene and carbon monoxide emitted from the London region were consistent with measurements in and downwind of other large urban areas and indicated traffic and associated fuel evaporation were major sources. Sub-micron aerosol composition was dominated by secondary species including sulphate (24% of sub-micron mass in the London plume and 29% in the non-plume regional aerosol), nitrate (24% plume; 20% regional) and organic aerosol (29% plume; 31% regional). The primary sub-micron aerosol emissions from London were minor compared to the larger regional background, with only limited increases in aerosol mass in the urban plume compared to the background (∼12% mass increase on average). Black carbon mass was the major exception and more than doubled in the urban plume, leading to a decrease in the single scattering albedo from 0.91 in the regional aerosol to 0.86 in the London plume, on average. Our observations indicated that regional aerosol plays a major role on aerosol concentrations around London, at least during typical summertime conditions, meaning future efforts to reduce PM levels in London must account for regional as well as local aerosol sources. © 2012 Author(s).
  • References (81)
    81 references, page 1 of 9

    Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., Decarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633-6653, doi:10.5194/acp-9-6633-2009, 2009.

    Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647-668, doi:10.5194/acp-10-647-2010, 2010.

    Allen, G., Coe, H., Clarke, A., Bretherton, C., Wood, R., Abel, S. J., Barrett, P., Brown, P., George, R., Freitag, S., McNaughton, C., Howell, S., Shank, L., Kapustin, V., Brekhovskikh, V., Kleinman, L., Lee, Y.-N., Springston, S., Toniazzo, T., Krejci, R., Fochesatto, J., Shaw, G., Krecl, P., Brooks, B., McMeeking, G., Bower, K. N., Williams, P. I., Crosier, J., Crawford, I., Connolly, P., Allan, J. D., Covert, D., Bandy, A. R., Russell, L. M., Trembath, J., Bart, M., McQuaid, J. B., Wang, J., and Chand, D.: South East Pacific atmospheric composition and variability sampled along 20◦ S during VOCALS-REx, Atmos. Chem. Phys., 11, 5237-5262, doi:10.5194/acp-11-5237-2011, 2011.

    Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, J. Atmos. Ocean. Technol., 13, 967-986, 1996.

    Anderson, T. L. and Ogren, J. A.: Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer, Aerosol Sci. Technol., 29, 57-69, doi:10.1080/02786829808965551, 1998.

    Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063-2101, doi:10.1016/S1352-2310(99)00460-4, 2000.

    Atkinson, R. W., Barratt, B., Armstrong, B., Anderson, H. R., Beevers, S. D., Mudway, I. S., Green, D., Derwent, R. G., Wilkinson, P., and Tonne, C.: The impact of the congestion charging scheme on ambient air pollution concentrations in London, Atmos. Environ., 43, 5493-5500, doi:10.1016/j.atmosenv.2009.07.023, 2009.

    Banta, R. M., Senff, C. J., Nielsen-Gammon, J., Darby, L. S., Ryerson, T. B., Alvarez, R. J., Sandberg, S. P., Williams, E. J., and Trainer, M.: A Bad Air Day in Houston, B. Am. Meteorol. Soc., 86, 657, doi:10.1175/BAMS-86-5-657, 2005.

    Baumgardner, D., Kok, G. L., and Raga, G. B.: On the diurnal variability of particle properties related to light absorbing carbon in Mexico City, Atmos. Chem. Phys., 7, 2517-2526, doi:10.5194/acp-7-2517-2007, 2007.

    Baumgardner, D., Kok, G., and Raga, G.: Warming of the Arctic lower stratosphere by light absorbing particles, Geophys. Res. Lett., 31, L06117, doi:10.1029/2003GL018883, 2004.

  • Metrics
    No metrics available
Share - Bookmark