Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO

Other literature type, Article English OPEN
Stratum, B. J. H. ; Vilà-Guerau de Arellano, J. ; Ouwersloot, H. G. ; Dries, K. ; Laar, T. W. ; Martinez, M. ; Lelieveld, J. ; Diesch, J.-M. ; Drewnick, F. ; Fischer, H. ; Hosaynali Beygi, Z. ; Harder, H. ; Regelin, E. ; Sinha, V. ; Adame, J. A. ; Sörgel, M. ; Sander, R. ; Bozem, H. ; Song, W. ; Williams, J. ; Yassaa, N. (2012)
  • Publisher: Copernicus Publications
  • Journal: (issn: 1680-7324, eissn: 1680-7324)
  • Related identifiers: doi: 10.5194/acp-12-5329-2012
  • Subject: Chemistry | QD1-999 | Physics | QC1-999

We study the interactions between atmospheric boundary layer (ABL) dynamics and atmospheric chemistry using a mixed-layer model coupled to chemical reaction schemes. Guided by both atmospheric and chemical measurements obtained during the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen Oxides) campaign (2008), numerical experiments are performed to study the role of ABL dynamics and the accuracy of chemical schemes with different complexity: the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) and a reduced mechanism of this chemical system. Both schemes produce satisfactory results, indicating that the reduced scheme is capable of reproducing the O<sub>3</sub>-NO<sub>x</sub>-VOC-HO<sub>x</sub> diurnal cycle during conditions characterized by a low NO<sub>x</sub> regime and small O<sub>3</sub> tendencies (less than 1 ppb per hour). By focusing on the budget equations of chemical species in the mixed-layer model, we show that for species like O<sub>3</sub>, NO and NO<sub>2</sub>, the influence of entrainment and boundary layer growth is of the same order as chemical production/loss. This indicates that an accurate representation of ABL processes is crucial in understanding the diel cycle of chemical species. By comparing the time scales of chemical reactive species with the mixing time scale of turbulence, we propose a classification based on the Damköhler number to further determine the importance of dynamics on chemistry during field campaigns. Our findings advocate an integrated approach, simultaneously solving the ABL dynamics and chemical reactions, in order to obtain a better understanding of chemical pathways and processes and the interpretation of the results obtained during measurement campaigns.
  • References (32)
    32 references, page 1 of 4

    Betts, A. K.: Non-precipitating convection and its parameterization, Q. J. Roy. Meteorol. Soc., 99, 178-196, 1973.

    Crowley, J. N., Thieser, J., Tang, M. J., Schuster, G., Bozem, H., Beygi, Z. H., Fischer, H., Diesch, J.-M., Drewnick, F., Borrmann, S., Song, W., Yassaa, N., Williams, J., Po¨hler, D., Platt, U., and Lelieveld, J.: Variable lifetimes and loss mechanisms for NO3 and N2O5 during the DOMINO campaign: contrasts between marine, urban and continental air, Atmos. Chem. Phys., 11, 10853-10870, doi:10.5194/acp-11-10853-2011, 2011.

    Damko¨hler, G.: Influence of turbulence on the velocity flames in gas mixtures, Z. Elektrochem., 46, 601-626, 1940.

    Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X., Thornberry, T., Carroll, M. A., Young, V., Shepson, P. B., Riemer, D., Apel, E., and Campbell, C.: Missing OH Reactivity in a Forest: Evidence for Unknown Reactive Biogenic VOCs, Science, 304, 722-725, 2004.

    Diesch, J.-M., Drewnick, F., Zorn, S. R., von der WeidenReinmu¨ller, S.-L., Martinez, M., and Borrmann, S.: Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia, Atmos. Chem. Phys., 12, 3761-3782, doi:10.5194/acp12-3761-2012, 2012.

    Dlugi, R., Berger, M., Zelger, M., Hofzumahaus, A., Siese, M., Holland, F., Wisthaler, A., Grabmer, W., Hansel, A., Koppmann, R., Kramm, G., Mo¨llmann-Coers, M., and Knaps, A.: Turbulent exchange and segregation of HOx radicals and volatile organic compounds above a deciduous forest, Atmos. Chem. Phys., 10, 6215-6235, doi:10.5194/acp-10-6215-2010, 2010.

    Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT. php), NOAA Air Resources Laboratory, Silver Spring, MD, 2011.

    Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43-67, doi:10.5194/gmd3-43-2010, 2010.

    Ganzeveld, L., Eerdekens, G., Feig, G., Fischer, H., Harder, H., Ko¨nigstedt, R., Kubistin, D., Martinez, M., Meixner, F. X., Scheeren, H. A., Sinha, V., Taraborrelli, D., Williams, J., Vila`- Guerau de Arellano, J., and Lelieveld, J.: Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign, Atmos. Chem. Phys., 8, 6223-6243, doi:10.5194/acp-8-6223-2008, 2008.

    Gao, W., Weseley, M., and Doskey, P.: Numerical modeling of the turbulent diffusion and chemistry of NOx, O3, isoprene, and other reactive trace gases in and above a forest canopy, J. Geophys. Res., 98, 18339-18353, 1993.

  • Metrics
    No metrics available
Share - Bookmark