Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum

Article, Other literature type, Research English OPEN
Jahn , A. ; Claussen , M. ; Ganopolski , A. ; Brovkin , V. (2005)
  • Publisher: European Geosciences Union (EGU)
  • Journal: (issn: 1814-9332, eissn: 1814-9332)
  • Related identifiers: doi: 10.5194/cp-1-1-2005
  • Subject: [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences | [ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment
    • ddc: ddc:550

The importance of the biogeophysical atmosphere-vegetation feedback in comparison with the radiative effect of lower atmospheric CO<sub>2</sub> concentrations and the presence of ice sheets at the last glacial maximum (LGM) is investigated with the climate system model CLIMBER-2. Equilibrium experiments reveal that most of the global cooling at the LGM (-5.1&deg;C) relative to (natural) present-day conditions is caused by the introduction of ice sheets into the model (-3.0&deg;C), followed by the effect of lower atmospheric CO<sub>2</sub> levels at the LGM (-1.5&deg;C), while a synergy between these two factors appears to be very small on global average. The biogeophysical effects of changes in vegetation cover are found to cool the global LGM climate by 0.6&deg;C. The latter are most pronounced in the northern high latitudes, where the taiga-tundra feedback causes annually averaged temperature changes of up to -2.0&deg;C, while the radiative effect of lower atmospheric CO<sub>2</sub> in this region only produces a cooling of 1.5&deg;C. Hence, in this region, the temperature changes caused by vegetation dynamics at the LGM exceed the cooling due to lower atmospheric CO<sub>2</sub> concentrations.
  • References (23)
    23 references, page 1 of 3

    Berger, A.: The role of CO2, sea-level and vegetation during the Milankovitch-forced glacial-interglacial cycles, in: GeosphereBiosphere Interactions and Climate, Proceedings of the workshop held at Pontifical Academy of Science, edited by: Bengtsson, L. O. and Hammer, C. U., Cambridge University Press, 119- 146, 2001.

    Berger, A., Dutrieux, A., Loutre, M. F., and Tricot, C.: Paleoclimate sensitivity to CO2 and insolation, Scientific Report 1996/6, Institut d'Astronomie et Ge´ophysique Georges Lemaˆıtre, Universite´ Catholique de Louvain, Louvain-la-Neuve, 1996.

    Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and Arctic ecosystems: 1. Vegetation changes north of 55◦ N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res., 108, doi: 10.1029/2002JD002 558, 2003.

    Brovkin, V., Claussen, M., Ganopolski, A., Bendtsen, J., Kubatzki, C., Petoukhov, V., and Andreev, A.: Carbon Cycle, vegetation and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Geochemical Cycles, 16, doi:10.1029/2001GB001 662, 2002a.

    Brovkin, V., Hoffmann, M., Bendtsen, J., and Ganopolski, A.: Ocean biology could control atmospheric δ13C during glacial-interglacial cycle, Geochem., Geophys., Geosyst., 3, doi:10.1029/2001GC000 270, 2002b.

    Brovkin, V., Levis, S., Loutre, M.-F., Crucifix, M., Claussen, M., Ganopolski, A., and C. Kubatzki, V. P.: Stability analysis of the climate-vegetation system in the northern high latitudes, Clim. Change, 57, 119-138, 2003.

    Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: Dynamic responses of global terrestrial ecosystems to changes in CO2 and climate, Global Change Biol., 7, 357-373, 2001.

    Crowley, T. J. and Baum, S.: Effect of vegetation on an ice-age climate model simulation, J. Geophys. Res., 102, 463-480, 1997.

    Ganopolski, A.: Glacial integrative modelling, Phil. Trans. Royal. Soc. Lond., 361, 1871-1884, 2003.

    Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153- 158, 2001.

  • Metrics
    No metrics available
Share - Bookmark