Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model

Other literature type, Article English OPEN
T. Roy ; H. V. Gupta ; A. Serrat-Capdevila ; J. B. Valdes (2017)
  • Publisher: Copernicus Publications
  • Journal: Hydrology and Earth System Sciences (issn: 1027-5606, eissn: 1607-7938)
  • Related identifiers: doi: 10.5194/hess-21-879-2017
  • Subject: T | G | GE1-350 | Geography. Anthropology. Recreation | Environmental technology. Sanitary engineering | Environmental sciences | Technology | TD1-1066

Daily, quasi-global (50° N&ndash;S and 180° W&ndash;E), satellite-based estimates of actual evapotranspiration at 0.25° spatial resolution have recently become available, generated by the Global Land Evaporation Amsterdam Model (GLEAM). We investigate the use of these data to improve the performance of a simple lumped catchment-scale hydrologic model driven by satellite-based precipitation estimates to generate streamflow simulations for a poorly gauged basin in Africa. In one approach, we use GLEAM to constrain the evapotranspiration estimates generated by the model, thereby modifying daily water balance and improving model performance. In an alternative approach, we instead change the structure of the model to improve its ability to simulate actual evapotranspiration (as estimated by GLEAM). Finally, we test whether the GLEAM product is able to further improve the performance of the structurally modified model. Results indicate that while both approaches can provide improved simulations of streamflow, the second approach also improves the simulation of actual evapotranspiration significantly, which substantiates the importance of making <q>diagnostic structural improvements</q> to hydrologic models whenever possible.
  • References (71)
    71 references, page 1 of 8

    Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration - Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, 1998.

    Arboleda, A., Ghilain, N., and Gellens-Meulenberghs, F.: The LSASAF evapotranspiration product - first results with MSG, in Proceedings of the 2005 EUMETSAT meteorological satellite data user's conference, Dubrovnik, Croatia, 2005.

    Bahremand, A.: HESS Opinions: Advocating process modeling and de-emphasizing parameter estimation, Hydrol. Earth Syst. Sci., 20, 1433-1445, doi:10.5194/hess-20-1433-2016, 2016.

    Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., and van der Wal, T.: A remote sensing surface energy balance algorithm for land (SEBAL), J. Hydrol., 212- 213, 213-229, doi:10.1016/S0022-1694(98)00254-6, 1998.

    Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, J. R. Stat. Soc. Ser. B, 26, 211-252, 1964.

    Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods, Water Resour. Res., 36, 3663- 3674, doi:10.1029/2000WR900207, 2000.

    Bruton, J. M., McClendon, R. W., and Hoogenboom, G.: Estimating Daily Pan Evaporation with Artificial Neural Networks, Trans. ASAE, 43, 491-496, doi:10.13031/2013.2730, 2000.

    Bulygina, N. and Gupta, H.: Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resour. Res., 45, W00B13, doi:10.1029/2007WR006749, 2009.

    Bulygina, N. and Gupta, H.: How Bayesian data assimilation can be used to estimate the mathematical structure of a model, Stoch. Environ. Res. Risk A., 24, 925-937, doi:10.1007/s00477-010- 0387-y, 2010.

    Bulygina, N. and Gupta, H.: Correcting the mathematical structure of a hydrological model via Bayesian data assimilation, Water Resour. Res., 47, W05514, doi:10.1029/2010WR009614, 2011.

  • Metrics
    No metrics available
Share - Bookmark