Monitoring offshore wind farm power performance with SCADA data and advanced wake model

Other literature type English OPEN
Mittelmeier, Niko ; Blodau, Tomas ; Kühn, Martin (2016)

Wind farm underperformance can lead to significant losses in revenues. Efficient detection of wind turbines operating below their expected power output and immediate corrections help maximise asset value. The presented method estimates the environmental conditions from turbine states and uses pre-calculated power matrices from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output are an indication of underperformance. The confidence of detected underperformance is estimated by detailed analysis of uncertainties of the method. Power normalisation with reference turbines and averaging several measurement devices can reduce uncertainties for estimating the expected power. A demonstration of the method’s ability to detect underperformance in the form of degradation and curtailment is given. Underperformance of 8 % could be detected in a triple wake condition.
Share - Bookmark