Sensitivity of inter-annual variation of CO2 seasonal cycle at Mauna Loa to atmospheric transport

Article English OPEN
Taguchi, Shoichi ; Murayama, Shohei ; Higuchi, Kaz (2011)

Origins of the inter-annual variations of the Mauna Loa atmospheric CO2 seasonal cycle related to atmospheric transport were examined using a global atmospheric transport model with prescribed land biota CO2 source functions at 11 land sections. On average, the seasonal variation of atmospheric CO2 at Mauna Loa is influenced mostly by the Siberian CO2 flux, followed by temperate Asia and North America. The inter-annual variability of the seasonal cycle is caused mainly by the inter-annual variation in the transport of the Siberian signal to Mauna Loa. The characteristics of the simulated seasonal cycle and its inter-annual variability at Mauna Loa are found to be sensitive to the quality of the wind data used to drive the transport model. Implication of this result is that for studying a long-term variations of atmospheric transport a meteorological data set for driving an atmospheric transport model should be obtained from the same production procedure.DOI: 10.1034/j.1600-0889.2003.00027.x
  • References (12)
    12 references, page 1 of 2

    Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie K. A. and Zhang, N. 1994. Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res. 99, 22831- 22855.

    Dargaville, R. J., Law, R. M. and Pribac, F. 2000. Implications of interannual variability in atmospheric circulations on modeled CO2 concentrations and source estimates. Global Biogeochem. Cycles 14, 931-943.

    Gurnery, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiliento, J., Taguchi, S., Takahashi, T. and Yuen, C. W. 2002. Robust regional estimates of annual mean CO2 sources and sinks. Nature 415, 626-629.

    Higuchi, K., Murayama, S. and Taguchi, S. 2002. Quasidecadal variation of the atmospheric CO2 seasonal cycle due to atmospheric circulation changes: 1979-1998. Geophys. Res. Lett. 29, 10.1029/2001GL013751.

    Keeling, C. D., Chin, J. F. S. and Whorf, T. P. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146-149.

    Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. and Nemani, R. R. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698- 702.

    Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A. and Klooster, S. A. 1993. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochem. Cycles 7, 811-841.

    Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y. and Field, C. B. 1997. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycles 11, 535-560.

    Rayner, P. J., Law, R. M. and Dargaville ?? 1999. The relationship between tropical CO2 fluxes and the El Nin˜o-Southern Oscillation. Geophys. Res. Lett. 26, 493- 496.

    Taguchi, S. 1996. A three-dimensional model of atmospheric CO2 transport based on analyzed winds: Model description and simulation results for TRANSCOM. J. Geophys. Res. 109, 15099-15109.

  • Metrics
    No metrics available
Share - Bookmark