An axisymmetric boundary layer solution for an unsteady vortex above a plane
 Publisher: CoAction Publishing
 Journal: Tellus A (issn: 16000870, eissn: 02806495)

Related identifiers: doi: 10.3402/tellusa.v26i3.9837 
Subject:arxiv: Physics::Fluid Dynamics

References
(12)
12 references, page 1 of 2
 1
 2
BellamyKnights, P G. 1970. An unsteady twocell vortex solution of the NavierStokes equations. J. Fluid Mech. 41, 673687.
BellamyKnights, P. G. 1971. Unsteady multicellular viscous vortices. J . Fluid Mech. 50, 116.
Burgers, J. M. 1940. Application of a model system to illustrate some points of the statistical theory of free turbulence. Proc. Acad. Sci. Amst. 43,212.
Burgers, J. M. 1948. A mathematical model illustrating the theory of turbulence. Adv. AppZ. Mech. 1, 197199.
Hartree, D. R. 1937. On a n equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer. Proc. Camb. phil. SOC3.3, 223239.
Lighthill, M. J. 1958. On displacement thickness. J . FZuid Mech. 4, 383392.
Morse, P. M. & Feshbach, H. 1953. Methods of theoretical physics. McGrawHill, New York.
Morton, B. R. 1966. Geophysical vortices. Progress in Aeronautical Sciences 7, 145194.
Oseen, C. W. 1911. Ark. Mat. Astr. Fys. 7.
Rott, N. 1958. On the viscous core of a line vortex. 2. angew. Math. Phys. 96, 543553.

Similar Research Results
(1)
Stagnation point flow in a vortex core (2011) 75% 
Metrics
No metrics available

 Download from


Cite this publication