Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia

Article English OPEN
Dörnbrack, Andreas ; Leutbecher, Martin ; Kivi, Rigel ; Kyrö, Esko (2011)

On 22 January 1997 1200 UT, the routine radiosonde from Sodankyla¨ , Finland, measured arecord low temperature of −94.5°C at 26 km. Mesoscale numerical simulations indicate strongmountain wave activity on this day. Two stratospheric temperature minima are simulated: onedirectly above the Scandinavian mountain ridge and another minimum in its lee about 500 kmto the east. Both minima are not resolved in the global analyses. The radiosonde profile as wellas the mesoscale model indicate that the eastern mesoscale temperature anomaly is caused byorographic inertia-gravity waves, i.e., hydrostatic mountain waves influenced by Coriolis force.Stratospheric ice clouds were observed visually and by ground-based lidar at Kiruna, Swedenand Sodankyla¨ , Finland on this day. The formation of these ice clouds required the cooling inthe mountain waves as the temperature according to global analyses was about 3 K above thefrost point. The occurrence of additional polar stratospheric ice clouds due to mountain-wavecooling increases the efficiency of chlorine activation and has implications for the resultingArctic ozone depletion. The extraordinary event under consideration occurred during a coldair outbreak with a cold front passing over the Scandinavian orography. This front was associatedwith strong winds in the lower troposphere. At the same time, northern Scandinavia waslocated below the inner edge of the polar vortex, where low synoptic-scale stratospheric temperaturesand a strong polar night jet are found.DOI: 10.1034/j.1600-0870.1999.00028.x
  • References (30)
    30 references, page 1 of 3

    Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Do¨ rnbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T., Reimer, E. and Peter, T. 1998a. Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature 391, 675-678.

    Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Do¨ rnbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T. and Peter, T. 1998b. Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res. 103, 5785-5796.

    Coy, L., Nash, E. R. and Newman, P. A. 1997. Meteorology of the polar vortex: Spring 1997. Geophys. Res. L ett. 24, 2693-2696.

    Deshler, T., Peter, T., M u¨ller, R. and Crutzen, P. J. 1994. The lifetime of leewave-induced ice particles in the Arctic stratosphere (1). Balloon-borne observations. Geophys. Res. L ett. 21, 2473-2478.

    Dietrichs, H. 1950. U¨ber die Entstehung der Perlmutterwolken. Meteorol. Rundschau 3, 208-213.

    D o¨rnbrack, A., Leutbecher, M., Volkert, H. and Wirth, M. 1998. Mesoscale forecasts of stratospheric mountain waves. Meteorol. Appl. 5, 117-126.

    Dudhia, J. 1993. A non-hydrostatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121, 1493-1513.

    Fricke, K.-H., M u¨ller, K. P., Baumgarten, G. and Siebert, J. 1997. Koordinierte Feldmessungen zum Einfluss von Leewellen auf Wolkenfelder in der polaren Stratospha¨re. Results presented at the 7th Statusseminar des Ozonforschungsprogrammes des BMBF, 10 and 11 July, 1997 in Bonn. Available from: Physikalisches Institut der Universita¨t Bonn, Nußallee 12, D-53115 Bonn, Germany.

    Gill, A. E. 1982. Atmosphere-ocean dynamics. Academic Press, 662 pp.

    Grell, G. A., Dudhia J. and StauVer, D. R. 1994. A description of the 5th-generation Penn State/NCAR mesoscale model (MM5). Techn. Note 398, National Center for Atmospheric Research, Boulder, USA, 121 pp.

  • Metrics
    No metrics available
Share - Bookmark