Bacterial inhibition of fungal growth and pathogenicity

Article English OPEN
Kerr, Jonathan R. (2011)
  • Publisher: Microbial Ecology in Health and Disease
  • Journal: Microbial Ecology in Health and Disease (issn: 1651-2235, eissn: 1651-2235)
  • Related identifiers: doi: 10.3402/mehd.v11i3.7895
  • Subject:
    mesheuropmc: bacteria

Antifungal activity has been detected in many bacterial genera, both saprophytes and human pathogens, including Actinomadura, Actinoplanes, Arthrobacter, Micromonospora, Streptomyces, Nocardia, Mycobacterium, Aureobacterium, Bacillus, Bre6ibacterium, Lactobacillus, Rhodococcus, Micrococcus, Streptococcus, Enterococcus, Escherichia, Proteus, Klebsiella, Enterobacter, Serratia, Pseudomonas, Burkholderia, Stenotrophomonas, Agrobacterium, Alcaligenes, Azotobacter, Clostridium and Fusobacterium. A variety of methods have been used to detect this activity in vitro. Presumably, this activity confers an ecological advantage on a bacterial population which competes with other species in a particular habitat. The significance of this activity includes the following. First, development of therapeutic antifungal drugs. Second, development of plant protection agents. Third, fungal growth inhibition within the human body in sites with a normal flora with effects on the pathogenesis and course of human infection. Fourth, inhibition of pathogenic fungi in human clinical specimens, reducing the likelihood of in vitro culture of fungi.
  • References (134)
    134 references, page 1 of 14

    1. Tomita K, Nishio M, Saitoh K, Yamamoto H, Hoshino Y, Ohkuma H, Konishi M, Miyaki T, Oki T. Pradimicins A, B and C: new antifungal antibiotics I. Taxonomy, production, isolation and physico-chemical properties. J Antibiot 1990; 43 (7): 755 - 62.

    2. Walsh TJ, Giri N. Pradimicins: a novel class of broad-spectrum antifungal compounds. Eur J Clin Microbiol Infect Dis 1997; 16 (1): 93 - 7.

    3. Trani A, Kettenring J, Ripamonti F, Goldstein B, Ciabatti R. Chemical modifications of the antibiotic, purpuromycin. Farmaco 1993; 48 (5): 637 - 51.

    4. Cooper R, Truumees I, Gunnarsson I, Loebenberg D, Horan A, Marquez J, Patel M, Gullo V, Puar M, Das P, et al. Sch 42137, a novel antifungal antibiotic from an Actinoplanes sp. Fermentation, isolation, structure and biological properties [published erratum appears in J Antibiot Aug; 45(8): C-3]. J Antibiot 1992; 45 (4): 444 - 53.

    5. Lysenkova LN, Olkhovatova OL, Malkina ND. Formation of a new polyene antibiotic octamycin by a culture of Actinoplanes ianthinogenes subsp. octamycini. Antibiotiki 1986; 31 (10): 741 - 3.

    6. Axelrood PE, Clarke AM, Radley R, Zemcov SJ. Douglasfir root-associated microorganisms with inhibitory activity towards fungal plant pathogens and human bacterial pathogens. Can J Microbiol 1996; 42 (7): 690 - 700.

    7. Nair MG, Mishra SK, Putnam AR, Pandey RC. Antifungal anthracycline antibiotics, spartanamycins A and B from Micromonospora spp. J Antibiot 1992; 45 (11): 1738 - 45.

    8. Wu RY, Yang LM, Yokoi T, Lee KH. Neihumicin, a new cytotoxic antibiotic from Micromonospora neihuensis. I. The producing organism, fermentation, isolation and biological properties. J Antibiot 1988; 41 (4): 481 - 7.

    9. Cooper R, Horan AC, Gentile F, Gullo V, Loebenberg D, Marquez J, Patel M, Puar MS, Truumees I. Sch 37137, a novel antifungal compound produced by a Micromonospora sp. Taxonomy, fermentation, isolation, structure and biological properties. J Antibiot 1988; 41 (1): 13 - 9.

    10. Nishizawa N, Kondo Y, Koyama M, Omoto S, Iwata M, Tsurouka T, Inouye S. Studies on a new nucleotide antibiotic, dapiramicin. II. Isolation, physico-chemical and biological characterisation. J Antibiot 1984; 37 (1): 1 - 5.

  • Similar Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark