The radiative effect of the anthropogenic influence on the stratospheric sulfate aerosol layer

Article English OPEN
Myhre, Gunnar ; Berglen, Tore F. ; Myhre, Cathrine E.L. ; Isaksen, Ivar S.A. (2011)
  • Publisher: Tellus B
  • Journal: Tellus B (issn: 1600-0889)
  • Related identifiers: doi: 10.3402/tellusb.v56i3.16431
  • Subject:
    mesheuropmc: respiratory system | complex mixtures

Stratospheric sulfate aerosols have a cooling effect on the Earth’s surface. Sulfur aerosols from large volcanic eruptions are often the dominant source, while non-volcanic background stratospheric sulfate aerosols are supposed to mainly originate from carbonyl sulfide (OCS). Several recent studies indicate, however, that this latter source is too small to account for the observed background stratospheric aerosol concentration. Based on model calculations we suggest that most of the lower stratospheric sulfate aerosol concentration is of anthropogenic origin. We estimate a global mean radiative forcing due to the anthropogenic influence on the stratospheric aerosol layer of −0.05 Wm−2. This represents a new climate forcing mechanism and emphasizes anthropogenic sulfur emission as an important cooling mechanism.DOI: 10.1111/j.1600-0889.2004.00106.x
  • References (47)
    47 references, page 1 of 5

    Arnold, F., Curtius, J., Spreng, S. and Deshler, T. 1998. Stratospheric aerosol sulfuric acid: first direct in situ measurements using a novel balloon-based mass spectrometer apparatus. J. Atmos. Chem. 30, 3- 10.

    Aydin, M., De Bruyn, W. J. and Saltzam, E. S. 2002. Preindustrial atmospheric carbonyl sulfide (OCS) from an Antarctic ice core. Geophys. Res. Lett. 29, doi:10.1029/2002GL014796.

    Berge, E. 1993. Coupling of wet scavenging of sulfur to clouds in a numerical weather prediction model. Tellus 45B, 1-22.

    Berntsen, T. and Isaksen, I. S. A. 1997. A global 3-D chemical transport model for the troposphere, 1, Model description and CO and ozone results. J. Geophys. Res. 102, 21 239-21 280.

    Bingen, C., Fussen, D. and Vanhellemont, F. 2004. Characterization of stratospheric aerosol distribution for volcanic and non volcanic aerosols observed through 16 years of SAGE II data (1984-2000). In: Volcanism and Earth's Atmosphere, AGU Geophysical Monograph 139 (eds A. Robock and C. Oppenheimer) American Geophysical Union, Washington, DC.

    Bregman, A., Krol, M. C., Teyssedre, H., Norton, W. A., Iwi, A., et al. 2001. Chemistry-transport model comparison with ozone observations in the midlatitude lowermost stratosphere. J. Geophys. Res. 106, 17 479-17 496.

    Brock, C. A., Hamill, P., Wilson, J. C., Jonsson, H. H. and Chan, K. R. 1995. Particle formation in the upper tropical troposphere: a source of nuclei for the stratospheric aerosol. Science 270, 1650-1653.

    Carmichael, G. R., Streets, D. G., Calori, G., Amann, M., Jacobson, M. Z. et al. 2002. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution, and climate. Environ. Sci. Technol. 36, 4707-4713.

    Chin, M. and Davis, D. D. 1995. A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J. Geophys. Res. 100, 8993-9005.

    Crutzen, P. J. 1976. The possible importance of OCS for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3, 73-76.

  • Metrics
    No metrics available
Share - Bookmark