A note on a geophysical fluid dynamics variational principle

Article English OPEN
KIRWAN JR., A. D. (2011)
  • Publisher: Co-Action Publishing
  • Journal: Tellus A (issn: 1600-0870)
  • Related identifiers: doi: 10.3402/tellusa.v36i2.11615
  • Subject:
    arxiv: Physics::Fluid Dynamics

A variational principle for an inviscid stratified fluid on a beta plane is developed for horizontal flows. For the special case of solenoidal flow on an f plane, it is shown that a certain velocity gradient invariant can be used to develop simple solutions to the equations of motion. The solution forms are critically dependent on relative magnitudes of the squared local vorticity and the squared total deformation.DOI: 10.1111/j.1600-0870.1984.tb00241.x
  • References (18)
    18 references, page 1 of 2

    Courant, R. and Hilbm. D. 1966. M e t W of mathematical physics, vol. 1. Interscience, New York, p. 561.

    Dutton, J. A. 1976. The ceaseless wind. McGraw Hill, p. 579.

    Ertel, H. 1942. Em neuer hydrodynamisher wirbelsatz. Metmrol. 2.59.277-28 I.

    b e l , H. 1952. Uber die Physikdsche Bedeutung von Funktionen welchc in der Clebsch -Transformation der Hydrodynamischen Gleichungen auhreten. Sitzber. Akad. Wiss. B e t h KI: Math. allg. Natum 3.

    Ertel, H. and Rossby, C. 0. 1949. A new Conservation theorem of hydrodynamics. Geufi. Pura e Appl. 14, 189- 193.

    Fortak, H. 1963. Betrachtungen zur Divergenz- und Balancegleichung der dynamischm Meteorologk. Beitr. zur Phys. der Atmos. 36.1-8.

    Henyey, F. S. 1983. Hamiltonian description of stratified fluid dynamics. Phys. Fluids 26,4047.

    Herivel, J. W. 1955. The derivation of the equations of motion of an ideal fluid by Hamilton's principk. Proc. Comb.Phil. Soc.51,343-349.

    Katz, J. and Lynden-Bell, D. 1982. A lagrangian for eulerian fluid mechanics. Proc. Roy. Soc. London A381,263-274.

    Kuwan. A. D.1975.Occank velocity gradients. J . Phys. Oceamgr. 5,729-735.

  • Metrics
    No metrics available
Share - Bookmark