Computationally efficient schemes and boundary conditions for a fine-mesh barotropic model based on the shallow-water equations

Article English OPEN
Elvius, Torbjörn ; Sundström, Arne (2011)

Two types of computationally efficient semi-implicit and leap-frog schemes for integrating the shallow-water equations are presented. Their accuracy and stability are investigated, both for the pure initial value problem and for limited-area forecasts. The proper formulation of boundary conditions for the latter case is also discussed. Two sets of stable and sufficiently accurate boundary conditions are given. The practical usefulness of these conditions is also supported by computer experiments.DOI: 10.1111/j.2153-3490.1973.tb01601.x
  • References (10)

    Charney, J. G., Fjmtoft, J. &von Neumann, J. 1950. Numerical integration of the barotropic vortioity equation. Tellus 4 , 237-254.

    Charney, J. G. 1960. Integration of the primitive and balance equations. Proceedings of the International Symposium on Numerical WeatherPrediction in Tokyo, November 7-13, 1960, pp. 131-151.

    Garrity, J. P. BcMcPherson, R. D. 1971. On an efficient scheme for the numerical integration of 1972. Difference approximations to mixed initial Kwizak, M. & Robert, A. 1971. Implicit integraboundary value problems. 11. Math. Comp. 26, tion of a grid point model. Mon. Wea. Rev. 99. 649-686. 32-36.

    Hill, G. E. 1968. Grid telescoping in numerical Moretti, G. 1969. Importance of boundary condiweather prediction. J . Appl. Meteor. 7, 29-38. tions in the numerical treatment of hyperbolic

    Johansson, 0. & Kreiss, H.-0. 1963. tfber das Ver- equations. Phys. Fluids,Suppl. 11, 13-20. fahren der zentralen Differenzen zur Losung des Platzman, G. W. 1954. The computational stability Cauchyproblems fur partielle Differentialglei- of boundary conditions in numerical integration chungen. B I T 3, 97-107. of the vorticity equation. Arch. Met. Geophys.

    Kreiss, H.-0. & Widlund, 0. 1967. Difference ap- Biokl., Serie A, 7, 29-40. proximations for initial value problems for par- Richardson, L. F. 1922. Weather prediction b y tial differential equations. Uppsala University, numerical process, p. 151. Cambridge Univ. Dept. of Computer Sciences, Report No. 7. Press, London. Reprinted 1965 by Dover Publice-

    Kreiss, H.-0. 1970. Initial boundary value prob- tions, Inc., New York. lems for hyperbolic systems. Comm. Pure Appl. Shapiro, M. A. & O'Brien, J. J. 1970. Boundary Math. 23, 277-298. conditions for fine-mesh limited area forecasts.

    Kreiss, H.-0. 1971. Difference approximations for J . Appl. Meteor. 9 , 345-349. initial boundary-value problems. Proc. Roy. SOC. Sundstrom, A. 1969. Stability theorems for the Lond. A 323, 255-261. barotropic vorticity equation. Mon. Wea. Rev.

    Kreiss, H.-0. & Oliger, J. 1972. Comparison of 97, 340-345. accurate methods for the integration of hyper- Sundstrom, A. 1973. On the well-posedness of the bolic equations. Tellus 24, 199-215. shallow-water equations. To be published.

    Kwizak, M. 1970. Semi-implicit integration of a Wang, H.-H. & Halpern, P. 1970. Experiments with grid point model of the primitive equations. Pub. a regional fine-mesh prediction model. J . Appl. in Met. No. 96, Arctic Met. Research Group, Meteor. 9, 545-553. McGill University.

  • Metrics
    No metrics available
Share - Bookmark