Bounds for initial growth rates on a non-geostrophic f-plane with lateral walls

Article English OPEN
Warren, F. W. G. ; Green, J. S. A. (2011)

Bounds for the growth rate in the non-geostrophic non-hydrostatic baroclinic instability problem of Eady, with or without lateral walls is considered. An application of Fourier transforms and Sturm Liouville contraction shows that the growth rate cannot exceed the largest positive root of the equation ?4 + (N2 ? ¼n2?2 ? ¼n2f2 = 0 where n denotes the vertical wind shear. N is the Väisäla-Brunt frequency. A simple physical argument is shown to give the same result.DOI: 10.1111/j.2153-3490.1971.tb00557.x
  • References (7)

    Ma.cIntyre, Michael E. 1965. A separable non· geostrophic baroclinic stability problem. J. Atmos. Sci. 22, 730-731.

    Warren, F. W. G. 1970a. A method for finding bounds for complex eigenvalues of second order systems. J. [nst. Math8. Applies. 6, 21-26.

    Warren, F. W. G. 1970b. Bounds for eigenvalues of second order systems. Zent. fur Math. u. Grenzgebiete. 188, 147-148.

    Green, J. S. A. 1960. A problem in baroclinic stability. Quart. J. Roy. Met. Soc. 86, 237-251.

    Howard, L. N. 1961. A note on a theorem of John W. Miles. J. Fluid Meeh. 10, 509-512.

    Eady,E. T. 1949. Long wave and cyclone waves. Tellus I, 25-52.

    Stone, Peter H. 1966. On non.geostrophic baroclinic stability. J. Atmos. Sci. 23, 390-404.

  • Metrics
    No metrics available
Share - Bookmark