Share  Bookmark

 Download from


 Funded by

Anderson, J. L. 2001. An ensemble adjustment filter for data assimilation. Mon. Wea. Rev. 129, 28842903.
Anderson, J. L. and Anderson, S. L. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev. 127, 27412758.
Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J. and coauthors. 1999. LAPACK Users' Guide, 3rd Edition. Society for Industrial and Applied Mathematics, Philadelphia, PA.
Arakawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the largescale environment.Part I. J. Atmos. Sci. 31, 674701.
Baek, SJ., Hunt, B. R., Szunyogh, I., Zimin. A. and Ott, E. 2004. Localized error bursts in estimating the state of spatiotemporal chaos. Chaos 14, 10421049.
Bishop, C. H., Etherton, B. J. and Majumdar, S. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev. 129, 420436.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. and Blade, I. 1999. The effective number of spatial degrees of freedom of a timevarying field. J. Climate 12, 19902009.
Daley, R. 1991. Atmospheric Data Analysis. Cambridge Univ. Press, Cambridge.
Dee, D. P. 1995. Testing the perfectmodel assumption in variational data assimilation. Proc. 2nd Int. Symp. on Assimilation of Observations in Meteorology and Oceanography. World Meteorological Organization, Tokyo, Japan, 225228.
Dongarra, J. J., Du Croz, J., Hammarling, S. and Hanson, R. J. 1988. An extended set of FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 14, 117.