Discrete solutions of the boundary value problem in physical geodesy

Article English OPEN
Bjerhammar, Arne (2011)

Solutions of the discrete boundary value problem of physical geodesy are discussed. Dirac impulses, Wiener–Hopf predictions and “reflexive predictions” are compared. The dramatic computational gains with “reflexive filtering” are discussed.DOI: 10.1111/j.2153-3490.1975.tb01663.x
  • References (40)
    40 references, page 1 of 4

    Bjerhammar, A. 1962. Gravity reduction t o a spherical surface. Royal Institute of Technology, Geodesy Division, Stockholm.

    Bjerhammar, A. 1963. A new theory of gravimetric geodesy. Royal Institute of Technology, Geodesy Division, Stockholm.

    Bjerhammar, A. 1963. Gravimetric geodesy free of density estimates through analysis of discrete gravity data. Gimrada, Fort Belvoir.

    Bjerhammar, A. 1964. A new theory of geodetic gravity. Royal Institute of Technology, Geodesy Division, Stockholm.

    Bjerhammar, A. 1965. The space geoid. Royal Institute of Technology, Geodesy Division, Stockholm, April-May.

    Bjerhammar, A. 1968. A generalized matrix algebra. Royal Institute of Technology. Geodesy Division, Stockholm,

    Bjerhammar, A. 1968. On gravity. Royal Institute of Technology, Geodesy Division, Stockholm.

    Bjerhammar, A. 1969. Theory of a new geoid. Bulletin Geodesique.

    Bjerhammar, A. 1969. On the boundary value problem of physical geodesy. Tellus.

    Bjerhammar, A. 1973. Theory of errors and generalized matrix inverses. Elsevier, Amsterdam.

  • Metrics
    No metrics available
Share - Bookmark