An overview and illustration of sensitivity of forecasts with respect to initial conditions
 Publisher: CoAction Publishing
 Journal: Tellus A (issn: 16000870, eissn: 02806495)

Related identifiers: doi: 10.3402/tellusa.v66.20496

References
(12)
12 references, page 1 of 2
 1
 2
Carrassi, A., Vannitsem, S., Zupanski, D. and Zupanski, M. 2009. The maximum likelihood ensemble filter performances in chaotic systems. Tellus A. 61, 587 600.
Daescu, D. and Todling, R. 2009. Adjoint estimation of the variation in model functional output due to the assimilation of data. Mon. Wea. Rev. 137, 1705 1716, notes and correspondence.
Errico, R. 2007. Interpretation of an adjointderived observational impact measure. Tellus A. 59, 273 276.
Gelaro, R., Langland, R., Pellerin, S. and Todling, R. 2010. The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev. 138, 4009 4025.
Gelaro, R., Zhu, Y. and Errico, R. 2007. Examination of variousorder adjointbased approximations of observation impact. Meteor. Zeit. 16, 685 692.
Langland, R. and Baker, N. 2004. Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus. 56, 189 201.
Le Dimet, F.X., Navon, I. and Daescu, D. 2002. Secondorder information in data assimilation. Mon. Wea. Rev. 130, 629 648.
Lorenz, E. 1996. Predictability: a problem partly solved. ECMWF Seminar on Predictability, ECMWF, Reading, UK, 1 18.
Lorenz, E. and Emanuel, K. 1998. Optimal sites for supplementary weather observations: simulations with a small model. J. Atmos. Sci. 55, 399 414.
TreĀ“ molet, Y. 2007. Firstorder and higherorder approximations of observation impact. Meteor. Zeit. 16, 693 694.

Metrics
No metrics available

 Download from


Cite this publication