Share  Bookmark

 Download from


 Funded by

Aires, F. and Rossow, W. B. 2003. Inferring instantaneous, multivariate and nonlinear sensitivities for the analysis of feedback processes in a dynamical system: Lorenz model casestudy. Q. J. R. Meteorol. Soc. 129, 239275.
Charney, J. G., Fjo¨rtoft, R. and von Neumann, J. 1950. Numerical integration of the barotropic vorticity equation. Tellus 2, 237254.
Charney, J. G., Fleagle, R. G., Lally, V. E., Riehl, H. and Wark, D. Q. 1966. The feasibility of a global observation and analysis experiment. Bull. Am. Meteorol. Soc. 47, 200220.
Eady, E. T. 1951. The quantitative theory of cyclone development. In: Compendium of Meteorology. Am. Meteorol. Soc., Boston, MA, 464 469.
Farmer, J. D. and Sidorowich, J. J. 1991. Optimal shadowing and noise reduction. Physica D 47, 373392.
Farrell, B. F. 1990. Small error dynamics and the predictability of atmospheric flows. J. Atmos. Sci. 47, 24092416.
Hansen, J. A. and Smith, L. A. 2001. Probabilistic noise reduction. Tellus 53A, 585598.
Ikeda, K. 1979. Multiplevalued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257.
Lacarra, J. and Talagrand, O. 1988. Shortrange evolution of small perturbations in a barotropic model. Tellus 40A, 8195.
Lorenz, E. N. 1965. A study of the predictability of a 28variable atmospheric model. Tellus 17, 321333.