Nonhydrostatic semielastic hybridcoordinate SISL extension of HIRLAM. Part I: numerical scheme
 Publisher: CoAction Publishing
 Journal: Tellus A (issn: 16000870)

Related identifiers: doi: 10.3402/tellusa.v59i5.15152

References
(40)
Bates, J. R. and McDonald, A. 1982. Multiply upstream, semiLagrangian advective schemes: analysis and application to a multilevel primitive equation model. Mon. Wea. Rev. 110, 18311842.
Bates, J. R., Moorthi, S. and Higgins, R. W. 1993. A global multilevel atmospheric model using a vector semiLagrangian finitedifference scheme. Part I: adiabatic formulation. Mon. Wea. Rev. 121, 244263.
Benard, P., 2003. Stability of semiimplicit and iterative centeredimplicit time discretization for various equation systems used in NWP. Mon. Wea. Rev. 131, 24792491.
Benard, P., 2004. On the use of a wider class of linear systems for the design of constantcoefficient semiimplicit time schemes in NWP. Mon. Wea. Rev. 132, 13191324.
Benoit, R., Desgagne´, M., Pellerin, P., Chartier, Y. and Desjardins, S. 1997. The Canadian MC2: A SemiLagrangian, SemiImplicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation. Mon. Wea. Rev. 125, 23822415.
Bubnova, R., Hello, G., Bernard, P. and Geleyn, J.F. 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrainfollowing coordinate in the framework of APREGE/Aladin NWP system. Mon. Wea. Rev. 123, 515535.
Coˆte´, J. and Staniforth, A. 1988. A twotimelevel semiLagrangian semiimplicit scheme for spectral models. Mon. Wea. Rev. 116, 2003 2012.
Davies, H. C. 1976. A lateral boundary formulation for multilevel prediction models. Q. J. R. Meteorol. Soc. 102, 405418.
Girard, C., Benoit, R. and Desgagne´, M. 2005. Finescale Topography and the MC2 Dynamics Kernel. Mon. Wea. Rev. 133, 14631477.
Golding, B. W. 1992. An efficient nonhydrostatic forecast model. Meteorol. Atmos. Phys. 50, 89103.
 Similar Research Results (1)

Metrics
No metrics available

 Download from


Cite this publication