A non-Gaussian Ensemble Filter for Assimilating Infrequent Noisy Observations

Article English OPEN
Harlim, John ; Hunt, Brian R. (2007)

We present a modified ensemble Kalman filter that allows a non-Gaussian background error distribution. Using a distribution that decays more slowly than a Gaussian allows the filter to make a larger correction to the background state in cases where it deviates significantly from the truth. For high-dimensional systems, this approach can be used locally. We compare this non-Gaussian filter to its Gaussian counterpart (with multiplicative variance inflation) with the three-dimensional Lorenz-63 model, the 40-dimensional Lorenz-96 model, and Molteni’s SPEEDY model, a global model with ∼105 state variables. When observations are sufficiently infrequent and noisy, the non-Gaussian filter yields a significant improvement in analysis and forecast errors.
  • References (28)
    28 references, page 1 of 3

    Anderson, J. L. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129, 2884-2903.

    Anderson, J. L. and Anderson, S. L. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127, 2741-2758.

    Bishop, C. H., Etherton, B. J. and Majumdar, S. J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129, 420-436.

    Cohn, S. E., da Silva, A., Sienkiewicz, M and Lamich, D. 1998. Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Weather Rev. 126, 2913-2926.

    Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F. and Fisher, M. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Qtr. J. R. Meteorol. Soc. 124, 1783- 1807.

    Evensen, G. 1994. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143-10162.

    Evensen, G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343-367.

    Fisher, M. and Courtier, P. 1995. Estimating the covariance matrix of analysis and forecast error in variational data assimilation. ECMWF Tech. Memo. 220.

    Fletcher, S. J. and Zupanski, M. 2006. A data assimilation method for lognormally distributed observational errors. Quarterly J. R. Meteorol. Soc. 132, 2505-2519.

    Ghil, M., Cohn, S. E., Tavantzis, J., Bube, K. and Isaacson, E. 1981. Applications of estimation theory to numerical weather prediction. In: Dynamic meteorology: Data assimilation methods, (eds. L. Bengtsson, M. Ghil and E. Ka¨lle´n), Springer-Verlag, New York, 139-224.

  • Metrics
    No metrics available
Share - Bookmark