Overview of the biosphere–aerosol–cloud–climate interactions (BACCI) studies

Article English OPEN
Kulmala, Markku ; Kerminen, Veli-Matti ; Laaksonen, Ari ; Riipinen, Ilona ; Sipilä, Mikko ; Ruuskanen, Taina M. ; Sogacheva, Larisa ; Hari, Pertti ; Bäck, Jaana ; Lehtinen, Kari E. J. ; Viisanen, Yrjö ; Bilde, Merete ; Svenningsson, Birgitta ; Lazaridis, Mihalis ; Tørseth, Kjetil ; Tunved, Peter ; Nilsson, E. Douglas ; Pryor, Sara ; Sørensen, Lise-Lotte ; Hõrrak, Urmas ; Winkler, Paul M. ; Swietlicki, Erik ; Riekkola, Marja-Liisa ; Krejci, Radovan ; Hoyle, Christopher ; Hov, Øystein ; Myhre, Gunnar ; Hansson, Hans-Christen (2011)

Here we present research methods and results obtained by the Nordic Centre of Excellence Biosphere–Aerosol–Cloud–Climate Interactions (BACCI) between 1 January 2003 and 31 December 2007. The centre formed an integrated attempt to understand multiple, but interlinked, biosphere–atmosphere interactions applying inter and multidisciplinary approaches in a coherent manner. The main objective was to study the life cycle of aerosol particles and their importance on climate change. The foundation in BACCI was a thorough understanding of physical, meteorological, chemical and ecophysiological processes, providing a unique possibility to study biosphere–aerosol–cloud–climate interactions. Continuous measurements of atmospheric concentrations and fluxes of aerosol particles and precursors and, CO2/aerosol trace gas interactions in different field stations (e.g. SMEAR) were supported by models of particle thermodynamics, transport and dynamics, atmospheric chemistry, boundary layer meteorology and forest growth. The main progress was related to atmospheric new particle formation, existence of clusters, composition of nucleation mode aerosol particles, chemical precursors of fresh aerosol particles, the contribution of biogenic aerosol particles on the global aerosol load, transport, transformation and deposition of aerosol particles, thermodynamics related to aerosol particles and cloud droplets, and the microphysics and chemistry of cloud droplet formation.DOI: 10.1111/j.1600-0889.2008.00354.x
  • References (128)
    128 references, page 1 of 13

    Allan, J. D., Alfarra, M. R., Bower, K. N., Coe, H., Jayne, J. T. and co-authors. 2006. Size and composition measurements of backround aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer. Atmos. Chem. Phys 6, 315-327.

    Ba¨ck, J., Hari, P., Hakola, H., Juurola, E. and Kulmala, M. 2005. Monoterpene emissions in Pinus sylvestris are independent of photosynthesis in spring. Boreal Environ. Res. 10, 409-424.

    Bellouin, N., Boucher, O., Tanre´, D. and Dubovik, O. 2003. Aerosol absorption over the clear-sky oceans deduced from POLDER1 and AERONET observations. Geophys. Res. Lett. 30, 1748. doi:10.1029/2003GL017121.

    Berglen, T. F., Myhre, G., Isaksen, I. S. A., Vestreng, V. and Smith, S. J. 2007. Sulphate trends in Europe: are we able to model the recent observed decrease ? Tellus 59B, 773-786.

    Berndt, T., Boge, O., Stratmann, F., Heintzenberg, J. and Kulmala, M. 2005. Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 307, 698-700.

    Bilde, M. and Pandis, S. N. 2001. Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of a- and b-pinene. Environ. Sci. Technol. 35, 3344-3349.

    Bilde, M. Svenningsson, B., Mønster, J. and Rosenørn, T. 2003. Evenodd alternation of the C3-C9 dicarboxylic acids. Environ. Sci. Technol. 37, 1371-1378.

    Boy, M., Hellmuth, O., Korhonen, H., Nilsson, E. D., ReVelle, D. and co-authors. 2006. MALTE - Model to predict new aerosol formation in the lower troposphere. Atmos. Chem. Phys. 6, 4499-4517.

    Brasseur, G. P. and Roeckner, E., 2005. Impact of improved air quality on the future evolution of climate. Geophys. Res. Lett 32, doi:10.1029/2005GL023902.

    Cappa, C. D., Lovejoy, E. R. and Ravishankara, A. R.J. 2007. Determination of evaporation rates and vapor pressures of very low volatility compounds: a study of the C4-C10 and C12 dicarboxylic acids. Phys. Chem. A. 111, 3099-3109, doi:10.1021/jp068686q S1089- 5639(06)08686-5.

  • Metrics
    No metrics available
Share - Bookmark