Variational data analysis of aerosol species in a regional CTM: background error covariance constraint and aerosol optical observation operators

Article English OPEN
Kahnert, Michael (2011)
  • Publisher: Tellus B
  • Journal: Tellus B (issn: 1600-0889)
  • Related identifiers: doi: 10.3402/tellusb.v60i5.16960
  • Subject:
    arxiv: Physics::Atmospheric and Oceanic Physics

A multivariate variational data assimilation scheme for the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model is presented and tested. A spectral, non-separable approach is chosen for modelling the background error constraints. Three different methods are employed for estimating background error covariances, and their analysis performances are compared. Observation operators for aerosol optical parameters are presented for externally mixed particles. The assimilation algorithm is tested in conjunction with different background error covariance matrices by analysing lidar observations of aerosol backscattering coefficient. The assimilation algorithm is shown to produce analysis increments that are consistent with the applied background error statistics. Secondary aerosol species show no signs of chemical relaxation processes in sequential assimilation of lidar observations, thus indicating that the data analysis result is well balanced. However, both primary and secondary aerosol species display emission- and advection-induced relaxations.DOI: 10.1111/j.1600-0889.2008.00377.x
  • References (57)
    57 references, page 1 of 6

    Andersson, C., Langner, J. and Bergstro¨m, R. 2007. Interannual variation and trends in air pollution over Europe due to climate variability during 1958-2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus 59B, 77-98.

    Benedetti, A. and Fisher, M. 2007. Background error statistics for aerosols. Q. J. R. Meteorol. Soc. 133, 391-405.

    Berre, L. 2000. Estimation of synoptic and mesoscale forecast error covariances in a limited-area model. Mon. Wea. Rev. 128, 644- 667.

    Bruggeman, D. A. G. 1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. 1. Dielektrizita¨tskonstanten und vinnova Leitfa¨higkeiten der Mischko¨rper aus isotropen Substanzen. Ann. Phys. 24, 636-664.

    Chy´lek, P., Videen, G., Geldart, D. J. W., Dobbie, J. S. and Tso, H. C. W. 2000. Effective medium approximations for heterogeneous particles. In: Light Scattering by Nonspherical Particles (eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis, Academic Press, San Diego , 274- 308.

    Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V. and Lamarque, J.-F. 2001. Simulating aerosols using a chemical transport methodology for INDOEX. J. Geophys. Res. 106, 7313-7336.

    Constantinescu, E. M., Sandu, A., Chai, T. and Carmichael, G. R. 2007a. Ensemble-based chemical data assimilation. I: ceneral approach. Q. J. R. Meteorol. Soc. 133, 1229-1243.

    Constantinescu, E. M., Sandu, A., Chai, T. and Carmichael, G. R. 2007b. Ensemble-based chemical data assimilation. II: Covariance localization. Q. J. R. Meteorol. Soc. 133, 1245-1256.

    Courtier, P., The´paut, J.-N. and Hollingsworth, A. 1994. A strategy for operational implementation of 4d-var using an incremental approach. Q. J. R. Meteorol. Soc. 120, 1367-1388.

    Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic´, D., and co-authors. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: formulation. Q. J. R. Meteorol. Soc. 124, 1783-1807.

  • Metrics
    No metrics available
Share - Bookmark