Linear non-divergent mass-wind laws on the sphere

Article English OPEN
Daley, Roger (2011)

The properties of 3 types of linear non-divergent mass-wind laws on the sphere have been examined: linear-balance equation, spherical harmonic expansions of the linearized primitive equations, and Rossby-Hough expansions. Both the symmetric and antisymmetric non-zonal cases are examined. The results show that all 3 methods are virtually equivalent for the antisymmetric case, but differ considerably for the symmetric case. All 3 methods, whether derived from the primitive equations or from a filtering approximation, appear to be singular at the equator in the symmetric case.DOI: 10.1111/j.1600-0870.1983.tb00181.x
  • References (15)
    15 references, page 1 of 2

    Baer, F. 1977. The spectral balance equation. Tellus 29, 107-1 15.

    Burridge, D. and Haseler, J. 1977. A model for medium range weather forecasting-adiabatic formulation. ECMWF Technical Report No. 4,45 pp.

    Buys-Ballot, C. 1857. Note sur le rapport de I'intensite de la direction du vent avec les ecarts simultanes du barometre. Compt. Ren. 45, 765-768.

    Daley, R. 1978. Variational non-linear normal mode initialization, Tellus 30, 20 1-2 18.

    Daley, R. 1981. Normal Mode initialization. Rev. Geophys. Space Phys. 19,450-468.

    Eliasen, E. and Machenhauer, B. 1965. A study of the fluctuations of the atmospheric flow patterns represented by spherical harmonics. Tellus 17, 220- 238.

    Flattery, T. 1967. Hough functions. Tech. Rept. No. 121, Dept. Geophys. Sci., The University of Chicago, 175 pp.

    Kasahara, A. 1976. Normal modes of ultra-long waves in the atmpshere.Mon. Wea. Rev. 104, 669-690.

    Kasahara, A. 1977. Numerical integration of the global barotropic primitive equations with Hough harmonic expansions. J . Amos. Sci. 34,687-701.

    Longuet-Higgins, M. 1968. The eigenfunctions of Laplace's tidal equations over a sphere. Philos. Trans. R . SOCL.ondon, Ser. A . 262,s 11-607.

  • Metrics
    No metrics available
Share - Bookmark