Data assimilation into nonlinear stochastic models
 Publisher: CoAction Publishing
 Journal: Tellus A (issn: 16000870)

Related identifiers: doi: 10.3402/tellusa.v51i2.12315

References
(47)
Bennett, A. F. and Thorburn, M. A. 1992. The generalized inverse of a nonlinear quasigeostrophic ocean circulation model. J. Phys. Oceanogr. 22, 213230.
Bennett, A. F., Leslie, L. M., Hagelberg, C. R. and Powers, P. E. 1993. Tropical cyclone prediction using a barotropic model initialized by a generalized inverse method. Mon. Wea. Rev. 121, 17141729.
Bergman, L. A., Wojtkiewicz, S. F., Johnson, E. A. and Spencer, B. F. 1996. A robust numerical solution of the FokkerPlanck equation for second order dynamical systems under parametric and external white noise excitation. Fields Inst. Comm. 9, 2337.
Bergman, L. A. and Spencer, B. F. Jr. 1992. Robust numerical solution of the transient FokkerPlanck equation for nonlinear dynamical systems. IUTAM Symposium, Turin. N. Bellomo and F. Casciati, eds., SpringerVerlag, Berlin, Heidelberg, 4959.
Bierman, G. J. 1977. Factorization methods for discrete sequential estimation. Academic Press, New York. 241 pp.
Bouttier, F. 1994. A dynamical estimation of forecast error covariances in an assimilation system. Mon. Wea. Rev. 122, 23762390.
Box, G. E. P and Muller, M. E. 1958. A note on the generation of random normal deviates. Annals Math. Stat. 29, 610611.
Budgell, W. P. 1986. Nonlinear data assimilation for shallow water equations in branched channels. J. Geophys. Res. 91, 1063310644.
Chang, J. S. and Cooper, G. 1970. A practical diVerence scheme for FokkerPlanck equations. J. Comput. Phys. 6, 116.
Charney, J. G. and Devore, J. G. 1979. Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 12051216.

Metrics
No metrics available

 Download from


Cite this publication