Share  Bookmark

 Download from


 Funded by

Aires, F. and Rossow, W. B. 2003. Inferring instantaneous, multivariate and nonlinear sensitivities for the analyses of feedback processes in a dynamical system: Lorenz model case study. Q. J. R. Meteor. Soc. 129, 239275.
Courant, R., Friedrichs, K. O. and Lewy, H. 1928. U¨ ber die partiellen Differenzgleichungen der mathematische Physik. Math. Ann. 100, 32 74.
Durran, D., 1999. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York, 465 pp. See p. 68.
Giraldo, F. X., 2005. Semiimplicit timeintegrators for a scalable spectral element atmospheric model. Q. J. R. Meteor. Soc. 131, 2431 2474.
Hansen, J. A. and Smith, L. A., 2000. The role of operational constraints in selecting supplementary observations. J. Atmos. Sci. 57, 28592871.
Hunt, R. R., Kalnay, E., Kostelich, E. J., Ott, E., Patil, D. J. and coauthors. 2004. Fourdimensional ensemble Kalman filtering. Tellus 56A, 273277.
Lorenz, E. N., 1984. Irregularity: a fundamental property of the atmosphere. Tellus 36A, 98110.
Lorenz, E. N., 1989. Computational chaosa prelude to computational instability. Physica D 35, 299317.
Lorenz, E. N., 2006. An attractor embedded in the atmosphere. Tellus 58A, 291296.
Lorenz, E. N. and Emanuel, K. A. 1998. Optimal sites for supplementary weather observations: simulation with a small model. J. Atmos. Sci. 55, 399414.