Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Наукові журнали Наці...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analytical review of methods and technologies for real-time big data processing in IoT infrastructures

Analytical review of methods and technologies for real-time big data processing in IoT infrastructures

Abstract

This paper presents an analytical review of modern methods and technologies for real-time big data processing in Internet of Things (IoT) infrastructures. It explores data stream sources, structural variability, and the key processing requirements such as latency, fault tolerance, and continuous availability. The advantages and limitations of Edge, Fog, and Cloud architectures are discussed, along with Lambda and Kappa approaches for building high-performance IoT systems. Special attention is given to stream processing platforms – Apache Kafka, Flink, Storm, and Spark Streaming – with an evaluation of their scalability, fault tolerance, and ease of deployment. The study highlights state-of-the-art anomaly detection methods in streaming data, including AutoEncoder, LSTM, and Isolation Forest, as well as the use of Complex Event Processing (CEP) for composite event analysis. Real-world applications in smart city systems, industrial automation, and healthcare are examined. The article summarizes current challenges and outlines directions for future research on improving security, adaptability, and efficiency in heterogeneous real-time IoT environments. У статті проведено аналітичний огляд сучасних методів і технологій обробки великих даних у реальному часі в інфраструктурах Інтернету речей (IoT). Розглянуто джерела потокових даних, особливості їхньої структури, мінливість та вимоги до затримки обробки. Проаналізовано переваги та обмеження архітектур Edge, Fog, Cloud, а також підходів Lambda та Kappa для побудови високопродуктивних IoT-систем. Окрема увага приділена платформам потокової обробки даних – Apache Kafka, Flink, Storm, Spark Streaming – з оцінкою їхньої масштабованості, відмовостійкості та зручності впровадження. Висвітлено сучасні методи виявлення аномалій у потоках даних, зокрема на основі AutoEncoder, LSTM, Isolation Forest, та застосування CEP для аналізу складних подій. Представлено приклади практичного застосування технологій у системах «розумного міста», промислової автоматизації та медицини. Узагальнено виклики та напрями подальших досліджень щодо покращення безпеки, адаптивності та ефективності реального часу в гетерогенних середовищах IoT.

Keywords

виявлення аномалій, потокова аналітика, Apache Kafka, великі дані, Internet of Things, обробка в реальному часі, адаптивне навчання, adaptive learning, Complex Event Processing, Flink, anomaly detection, Інтернет речей, Edge/Fog/Cloud, big data, stream analytics, real-time processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze