Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Наукові журнали Наці...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Justification of the effectiveness of the integration and application of specialized types of UAVs in the process of maintenance of the infrastructure of high-voltage power lines

Justification of the effectiveness of the integration and application of specialized types of UAVs in the process of maintenance of the infrastructure of high-voltage power lines

Abstract

The use of specialized types of UAVs in the process of technical maintenance of the infrastructure of high-voltage transmission lines is becoming more and more widespread and is used by companies in the energy sector of Ukraine. The energy efficiency and speed of processing information about the state of power lines with the help of specialized software allows you to form a variety of summary information about the high-quality periodic maintenance of high-voltage power lines, especially in hard-to-reach places where they are laid. Accurate detection of power lines using UAVs is based on methods that use deeply supervised neural networks for image processing at the pixel level of three-dimensional environmental point cloud data. Застосування спеціалізованих типів БПЛА в процесі технічного обслуговування ін-фраструктури високовольтних ЛЕП набуває все більшого розповсюдження та ви-користовується компаніями енергетичного сектору України. Енергоефективність та швидкість обробки інформації про стан ЛЕП за допомогою спеціалізованого ПЗ дозволяє формувати різноманітну звідну інформацію щодо якісного періодичного обслуговування високовольтних ЛЕП особливо важкодоступних місць їх прокладан-ня. Точне виявлення ЛЕП за допомогою БПЛА базується на методах, які використо-вують глибоко контрольовані нейронні мережі обробки зображень на рівні пікселів тривимірних даних хмар точок навколишнього середовища.

Keywords

високовольтні ЛЕП, енергетичний сектор, UAV, high-voltage power lines, БПЛА, energy sector, технічне обслуговування, нейронні мережі, neural networks, maintenance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze
Related to Research communities