• shareshare
  • link
  • cite
  • add
auto_awesome_motion View all 2 versions
Publication . Preprint . Article . 2020 . Embargo end date: 01 Jan 2020

Temperature-dependent photoluminescence: A theoretical study

Kurtulik, Matej; Manor, Assaf; Weill, Rafi; Rotschild, Carmel;
Open Access
Published: 01 Jul 2020
Publisher: arXiv
Photoluminescence (PL) is a light matter quantum interaction associated with the chemical potential of light formulated by the Generalized Planck's law. Without knowing the inherent temperature dependence of chemical potential, the Generalized Planck's law is insufficient in order to characterize PL vs. T. Recent experiments showed that PL at a critical temperature abruptly shifts from a conserved rate, accompanied by a blue-shift, to thermal emission. Here, we theoretically study temperature dependent PL by including phononic interactions in a detailed balance analysis. We show that in a three-level system, both chemical potential and T are defined in the case of fast thermalization. Our solution validates recent experiments and predicts new features, including an inherent relation between emissivity and external quantum efficiency of a system, a universal point defined by the pump and the temperature where the emission rate is fixed to any material, a new phonon induced quenching mechanism, and thermalization of the photon spectrum. Our high temperature luminescence solution is relevant to and important for all photonic fields where the temperature is dominant

Optics (physics.optics), Atomic Physics (physics.atom-ph), FOS: Physical sciences, Physics - Optics, Physics - Atomic Physics

24 references, page 1 of 3

1. G. Stokes, On the change in Refrangibility of Light, Phil. Tran. of the Roy. Soc. of Lon., 142, 463-562 (1852).

2. D. R. Vij, Luminescence of Solids (Springer US, 1998).

3. G. Liu et al., Spectroscopic Properties of Rare Earths in Optical Materials (Springer-Verlag Berlin Heidelberg, 2005).

4. M. Gaft et al., Modern Luminescence Spectroscopy of Minerals and Materials (Springer International Publishing, 2015).

5. P. Hanninen et al., Lanthanide Luminescence (SpringerVerlag Berlin Heidelberg, 2011).

6. J. Thirumalai, Luminescence: An Outlook on the Phenomena and their Applications (IntechOpen, 2016).

7. L. Bergman et al., Handbook of Luminescent Semiconductor Materials (CRC Press, 2019).

8. A. Einstein, Strahlung-Emission und Absorption nach der Quantentheorie. Verhandlungen der Deutchen Physialischen Gesellschaft 18, 318-323 (1916).

9. G. Kirchhoff, Uber den Zusammenhang zwischen Emission und Absorption von Licht und Warme, Monatsberichte der Akademie der Wissenschaften zu Berlin, 783-787 (1859).

10. J. Stefan, Uber die Beiahung zwischen der Warmestrahlung und der Temperature, Sitzungsberichte der mathematischnaturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften 79, 391 (1879).

Funded by
EC| ThforPV
New Thermodynamic for Frequency Conversion and Photovoltaics
  • Funder: European Commission (EC)
  • Project Code: 638133
  • Funding stream: H2020 | ERC | ERC-STG
Related to Research communities