publication . Preprint . 2017

Accretion of a Symmetry Breaking Scalar Field by a Schwarzschild Black Hole

Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V.;
Open Access English
  • Published: 02 Nov 2017
Abstract
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential, and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.
Subjects
arXiv: General Relativity and Quantum CosmologyAstrophysics::High Energy Astrophysical Phenomena
free text keywords: General Relativity and Quantum Cosmology, High Energy Physics - Theory
Funded by
EC| COSMICDAWN
Project
COSMICDAWN
Understanding the Origin of Cosmic Structure
  • Funder: European Commission (EC)
  • Project Code: 306478
  • Funding stream: FP7 | SP2 | ERC
Download from
19 references, page 1 of 2

1. Peccei RD, Quinn HR. CP Conservation in the Presence of Pseudoparticles. Phys Rev Lett. 1977 Jun;38:1440-1443. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.38.1440. [OpenAIRE]

2. Preskill J, Wise MB, Wilczek F.

21. Baumgarte TW, Shapiro SL. Numerical Relativity: Solving Einstein's Equations on the Computer. New York, NY, USA: Cambridge University Press; 2010.

22. Pretorius F. Evolution of binary black hole spacetimes. Phys Rev Lett. 2005;95:121101.

23. Price RH. Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations. Phys Rev D. 1972 May;5:2419-2438. Available from: https://link.aps.org/doi/10.1103/PhysRevD.5.2419.

24. Barack L, Ori A. Late time decay of scalar perturbations outside rotating black holes. Phys Rev Lett. 1999;82:4388. [OpenAIRE]

25. Hod S. The Radiative tail of realistic gravitational collapse. Phys Rev Lett. 2000;84:10-13. [OpenAIRE]

26. Burko LM, Khanna G. Mode coupling mechanism for late-time Kerr tails. Phys Rev. 2014;D89(4):044037.

27. Poisson E, Israel W. Inner-horizon instability and mass inflation in black holes. Phys Rev Lett. 1989 Oct;63:1663-1666. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.63.1663.

28. Poisson E, Israel W. Internal structure of black holes. Phys Rev D. 1990 Mar;41:1796-1809. Available from: https://link.aps.org/doi/10.1103/PhysRevD.41.1796.

29. Ori A. Inner structure of a charged black hole: An exact mass-inflation solution. Phys Rev Lett. 1991;67:789-792. [OpenAIRE]

30. Brihaye Y, Herdeiro C, Radu E. Inside black holes with synchronized hair. Phys Lett. 2016;B760:279-287. [OpenAIRE]

31. Thuestad I, Khanna G, Price RH. Scalar Fields in Black Hole Spacetimes. Phys Rev. 2017;D96(2):024020.

32. Zenginoglu A, Khanna G. Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime. Phys Rev. 2011;X1:021017.

33. Witek H, Cardoso V, Ishibashi A, Sperhake U. Superradiant instabilities in astrophysical systems. Phys Rev. 2013;D87(4):043513. [OpenAIRE]

19 references, page 1 of 2
Any information missing or wrong?Report an Issue