INVESTIGATION OF MECHANICAL PROPERTIES, MORPHOLOGY, AND BIODEGRADABILITY OF COMPOSITIONS BASED ON POLYLACTIDE AND POLYSACCHARIDES

Article Russian OPEN
Роговина (Rogovina), Светлана (Svetlana) Захаровна (Zaharovna) ; Алексанян (Aleksanyan), Кристине (Kristine) Владимировна (Vladimirovna) ; Горенберг (Gorenberg), Аркадий (Arkadij) Яковлевич (Jakovlevich) ; Дерябина (Deryabina), Юлия (Julija) Ивановна (Ivanovna) ; Исакова (Isakova), Елена (Elena) Павловна (Pavlovna) ; Прут (Prut), Эдуард (Eduard) Вениаминович (Veniaminovich) ; Берлин (Berlin), Александр (Aleksandr) Александрович (Aleksandrovich) (2014)
  • Publisher: Altai State University
  • Journal: Khimiia rastitel'nogo syr'ia (Chemistry of plant raw material) (issn: 1029-5143, eissn: 1029-5151)
  • Related identifiers: doi: 10.14258/jcprm.201501464
  • Subject: biodegradability, blend, ethyl celluloseа, chitosan, polylactide, poly(ethylene glycol) | биоразлагаемость, смеси, этилцеллюлоза, хитозан, полилактид, полиэтиленгликоль

The blends of polylactide with ethyl cellulose and chitosan are obtained in a Brabender mixer under conditions of high temperature shear deformations at different initials ratios of reagents. The investigation of physicomechanical properties of compositions has shown that systems have high rigidity. To improve the elasticity poly(ethylene glycol) (PEG) and high-molecular polyolefin polydecene are added into compositions. It has turned out that polydecene weakly affects the mechanical characteristics, while PEG leads to noticeable increase in elongation at break. Biodegradability of compositions obtained is investigated by weight loss of samples after holding in soil, tests on fungus resistance, and analysis of film morphology by scanning electron microscopy after holding in soil. It is found that introduction of third component (PEG) leads to increase in composition biodegradability.
  • References (21)
    21 references, page 1 of 3

    1. Rogovina S.Z., Aleksanjan K.V., Novikov D.D., Prut Je.V., Rebrov A.V. Vysokomolekuljarnye soedinenija A, 2009, vol. 51, no. 5, pp. 813-822. (in Russ.).

    2. Wang X., Zhuang Y., Dong L. J. Appl. Polym. Sci. 2013, vol. 127, pp. 471-477.

    3. Anderson K.S., Lim S.H., Hillmyer M.A. J. Appl. Polym. Sci. 2003, vol. 89, pp. 3757-3768.

    4. Feng Y., Hu Y., Yin J., Zhao G., Jiang W. Polym. Eng. Sci. 2013, vol. 53, pp. 389-396.

    5. Feng F., Ye L. J. Appl. Polym. Sci. 2011, vol. 119, pp. 2778-2783.

    6. Bitinis N., Verdejo R., Cassagnau P., Lopez-Manchado M.A. Mater. Chem. Phys. 2011, vol. 129, pp. 823-831.

    7. Xie F., Li Q.F., Gu B., Liu K., Shen G.X. Microsurgery. 2008, vol. 27, pp. 471-479.

    8. Li L., Ding S., Zhou C. J. Appl. Polym. Sci. 2004, vol. 91, pp. 274-277.

    9. Nanda R., Sasmal A., Nayak P.L. Carbohydr. Polym. 2011, vol. 83, pp. 988-994.

    10. Suyatma N.E., Copinet A., Tighzert L., Coma V. J. Polym. Environ. 2004, vol. 12, no. 1, pp. 1-6.

  • Metrics
    No metrics available
Share - Bookmark