Локально однородные псевдоримановы многообразия размерности 4 с изотропным тензором Вейля

Article Russian OPEN
Клепикова, С.В.; Хромова, О.П.;
(2018)

Papers of many mathematicians are devoted to studying of conformally flat (i.e., with the trivial Weyl tensor) (pseudo)Riemannian manifolds. Moreover, one can consider manifolds with Weyl tensors having zero squared length while itself being non zero. Also, such manifol... View more
  • References (14)
    14 references, page 1 of 2

    1. Родионов Е.Д., Славский В.В., Чибрикова Л. Н. Локально конформно однородные псевдори- мановы пространства // Мат. труды. ƒ 2006. ƒ Т. 9, № 1. DOI: 10.3103/S1055134407030030

    2. Alekseevskiy D.V. Lorentzian manifolds with transitive conformal group // Note di Matematica. ƒ 1974. ƒ V. 37, № 1. DOI:10.1285/i15900932v37suppl1p35

    3. Alekseevskiy D.V. Groups of conformal transformations of Riemannian spaces // Math. Sb. ƒ 1985. ƒ V. 89, № 1. DOI: 10.1070/SM1972v018n02ABEH001770

    4. Alekseevsky D.V. The sphere and the Euclidean space are the only Riemannian manifolds with essential conformal transformations // Uspekhi Math. Nauk. ƒ 1973. ƒ V. 28, № 5.

    5. Ku¨hnel W., Rademacher H-B. Conformal transformations of pseudo-Riemannian manifolds Recent Development of Pseudo-Riemannian geometry ƒ European Mathematical Society Publishing House, Switzerland: 2008. ƒ P. 261-298. DOI: 10.4171/051

    6. Ferrand J. The action of conformal transformations on a Riemannian manifold // Math. Ann. ƒ 1996. ƒ V. 304, № 2. ƒ P. 272-291.

    7. Frances C. Essential conformal structures in Riemannian and Lorentzian structures Recent Development of Pseudo-Riemannian geometry ƒ European Mathematical Society Publishing House, Switzerland: 2008. ƒ P. 234-260. DOI: 10.4171/051

    8. Podoksenov M.N. Conformally homogeneous Lorentzian manifolds // Sib. Mat. J. ƒ 1992. ƒ V. 33, № 6.

    9. Takagi H. Conformally flat Riemannian manifolds admitting a transitive group of isometries // Tohoku Math. J. ƒ 1975. ƒ V. 27, № 1. DOI: 10.2748/tmj/1178241040

    11. Milnor J. Curvature of left invariant metric on Lie groups // Advances in mathematics. ƒ 1976. ƒ V. 21. ƒ P. 293-329. DOI: 1016/S0001-8708(76)80002-3.

  • Related Organizations (5)
  • Metrics
Share - Bookmark