publication . Article . 2017

Оценка качества классификации текстовых материалов с использованием алгоритма машинного обучения «случайный лес»

Веретенников, И.С.; Карташев, Е.А.; Царегородцев, А.Л.;
Open Access Russian
  • Published: 01 Nov 2017 Journal: Izvestiya of Altai State University (issn: 1561-9451, eissn: 1561-9443, Copyright policy)
  • Publisher: Izvestiya of Altai State University
Abstract
The results of quality evaluation of text materials classification by the "random forests" machine learning algorithm implemented in the “scikit-learn” library are presented. Functions used in the “scikit-learn” library, as well as the parameters that affect classification quality, are described. The main stages of text materials classification are shown in the paper: the formation of sets of materials for training and control (ensuring sample representativeness, text processing, definition of groups for training and control); classifier model training; classifier model testing; quality evaluation of the obtained results. The quality evaluation is carried out us...

вание. - № 21. - 2010. 3. Sebastiani F. Machine learning in automated text

categorization // ACM Computing Surveys. - 34(1) . - 2002. 4. Кафтанников И.Л., Парасич А.В. Об особенности приме-

оэлектроника. - 2015. - Т. 15, No 3 [Электронный ресурс]. -

URL: https://vestnik.susu.ru/ctcr/article/viewFile/4205/3780. 5. Вьюгин В.В. Математические основы машинного

тайского гос. ун-та. - 2013. - №1/2(77). DOI: 10.14258/

izvasu(2013)1.2-24. 9. Андреев A.M., Березкин Д.В., Морозов B.B., Сима-

of Open Information Technologies : научный журнал. - 2014.

Т. 2, No 7 [Электронный ресурс]. - URL:http: // cyberleninka.

bazy-znaniy-predpriyatiya. 12. Random Forest Classifier [Electronic resourse]. -

RandomForestClassifier. 13. Половикова О.Н. Анализ способов формализаций

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue