publication . Article . 2019

The Optimality and Accuracy of Computer Calculations of the Gibbs Free Energy of Hydration of Molecules in the Continuum Models of Solvation

Шеповалов, К.М.; Маслова, О.А.; Безносюк, С.А.; Жуковский, М.С.; Жуковская, Т.М.;
Open Access Russian
  • Published: 06 Mar 2019 Journal: Izvestiya of Altai State University (issn: 1561-9451, eissn: 1561-9443, Copyright policy)
  • Publisher: Izvestiya of Altai State University
Abstract
  In this paper, computer simulations of dissolving some small organic molecules: methanol (CH3OH), ethanol (CH5OH), acetamide (H3CC(O)NH2), methanethiol (CH3SH), methylamine (CH3NH2), chloromethane (CH3Cl) in water and calculations of the Gibbs free energy of hydration are performed. Calculations of the free energy of hydration are carried out within the framework of two well-known continuum solvation models: Solvation Model of Density (SMD) and Conductor-like Polarizable Continuum Model (CPCM). The quantum-mechanical part of the calculations is performed by the method of the hybrid density functional b3lyp and the restricted Hartree-Fock method. A compara...
Subjects
arXiv: Physics::Chemical Physics
free text keywords: condensed matter physics, continual solvation models, density functional method, Hartree - Fock method, computer simulation, free energy of dissolution, hydration of organic molecules, физика конденсированного состояния, континуальные модели сольватации, метод функционала плотности, метод Хартри - Фока, компьютерное моделирование, свободная энергия растворения, гидратация органических молекул

1. Spaeth Justin R., Kevrekidis Ioannis G. Panagiotopoulos Athanassios Z. A comparison of implicit and explicit-solvent simulations of self-assembly in block copolymer and solute systems // Chem. Phys. 2011. Vol. 134. [OpenAIRE]

2. Mathew Kiran, Sundararaman Ravishankar, LetchworthWeaver Kendra, Arias T.A., Hennig Richard G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways // Chem. Phys. 2013. Vol. 140, №8.

3. Marenich A.V., Cramer Ch.J., Truhlar D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions // Chem. Phys. B. 2009. Vol. 113, № 18. [OpenAIRE]

4. Cossi M., Rega N., Scalmani G., Barone V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model// Chem. Phys. 2003. Vol. 24, № 6. [OpenAIRE]

5. Mennucci B., Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics // Chem. Phys. 1998. Vol. 107, № 8.

6. Langlet J., Claverie P., Caillet J., Pullman A., Improvements of the continuum model. 1. Application to the calculation of the vaporization thermodynamic quantities of nonassociated liquids // Chem. Phys. Vol. 92, № 6.

7. Amovilli C., Mennucci B. Self-Consistent-Field Calculation of Pauli Repulsion and Dispersion Contributions to the Solvation Free Energy in the Polarizable Continuum Model // Chem. Phys. B. 1998. Vol. 101, № 6.

8. Floris F., Tomasi J. Evaluation of the Dispersion Contribution to the Solvation Energy. A Simple Computational Model in the Continuum Approximation // J. Comput. Chem. 1989. Vol. 10, № 5. [OpenAIRE]

9. Pertsin A., Kitaigorodsky A.I. The Atom-Atom Potential Method. Springer-Verlag Berlin Heidelberg, 1987.

10. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General Atomic and Molecular Electronic Structure System // J. Comput. Chem. 1993. Vol. 14.

11. Gordon M.S., Schmidt M.W., Dykstra C.E., Frenking G., Kim K.S., Scuseria G.E. (editors). Theory and Applications of Computational Chemistry: the first forty years. Elsevier ; Amsterdam, 2005.

12. Gonçalves P.F., Stassen H. Free energy of solvation from molecular dynamics simulations for low dielectric solvents / Pure and Appl. Chem. 2004. Vol. 76, № 1.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue