Оптимальность и точность компьютерных вычислений свободной энергии Гиббса гидратации молекул в континуальных моделях сольватации

Article Russian OPEN
Шеповалов, К.М.; Маслова, О.А.; Безносюк, С.А.; Жуковский, М.С.; Жуковская, Т.М.;
(2019)
  • Publisher: Izvestiya of Altai State University
  • Journal: Izvestiya of Altai State University (issn: 1561-9451, eissn: 1561-9443)
  • Publisher copyright policies & self-archiving
  • Identifiers: doi: 10.14258/izvasu(2019)1-08
  • Subject: континуальные модели сольватации | continual solvation models | метод Хартри - Фока | density functional method | свободная энергия растворения | гидратация органических молекул | hydration of organic molecules | метод функционала плотности | физика конденсированного состояния | компьютерное моделирование | condensed matter physics | Hartree - Fock method | computer simulation | free energy of dissolution
    arxiv: Physics::Chemical Physics

  In this paper, computer simulations of dissolving some small organic molecules: methanol (CH3OH), ethanol (CH5OH), acetamide (H3CC(O)NH2), methanethiol (CH3SH), methylamine (CH3NH2), chloromethane (CH3Cl) in water and calculations of the Gibbs free energy of h... View more
  • References (12)
    12 references, page 1 of 2

    1. Spaeth Justin R., Kevrekidis Ioannis G. Panagiotopoulos Athanassios Z. A comparison of implicit and explicit-solvent simulations of self-assembly in block copolymer and solute systems // Chem. Phys. 2011. Vol. 134.

    2. Mathew Kiran, Sundararaman Ravishankar, LetchworthWeaver Kendra, Arias T.A., Hennig Richard G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways // Chem. Phys. 2013. Vol. 140, №8.

    3. Marenich A.V., Cramer Ch.J., Truhlar D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions // Chem. Phys. B. 2009. Vol. 113, № 18.

    4. Cossi M., Rega N., Scalmani G., Barone V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model// Chem. Phys. 2003. Vol. 24, № 6.

    5. Mennucci B., Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics // Chem. Phys. 1998. Vol. 107, № 8.

    6. Langlet J., Claverie P., Caillet J., Pullman A., Improvements of the continuum model. 1. Application to the calculation of the vaporization thermodynamic quantities of nonassociated liquids // Chem. Phys. Vol. 92, № 6.

    7. Amovilli C., Mennucci B. Self-Consistent-Field Calculation of Pauli Repulsion and Dispersion Contributions to the Solvation Free Energy in the Polarizable Continuum Model // Chem. Phys. B. 1998. Vol. 101, № 6.

    8. Floris F., Tomasi J. Evaluation of the Dispersion Contribution to the Solvation Energy. A Simple Computational Model in the Continuum Approximation // J. Comput. Chem. 1989. Vol. 10, № 5.

    9. Pertsin A., Kitaigorodsky A.I. The Atom-Atom Potential Method. Springer-Verlag Berlin Heidelberg, 1987.

    10. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General Atomic and Molecular Electronic Structure System // J. Comput. Chem. 1993. Vol. 14.

  • Related Organizations (5)
  • Metrics
Share - Bookmark