Powered by OpenAIRE graph
Found an issue? Give us feedback

NSFDEB-NERC-Wildlife corridors: do they work and who benefits?

Funder: UK Research and InnovationProject code: NE/T006935/1
Funded under: NERC Funder Contribution: 420,470 GBP

NSFDEB-NERC-Wildlife corridors: do they work and who benefits?

Description

Humans have modified over 75% of the global land area, leading to huge, negative impacts on biodiversity. A major consequence is that once large natural habitats have become fragmented into small islands of habitat within a sea of human-modified land such as farms and cities. Most species depend on dispersal (the movement of individuals from where they are born to a different location) to maintain healthy populations across landscapes. When their habitat becomes fragmented into small, isolated patches, species are often unable to disperse effectively between the remnant patches and this frequently results in population declines, loss of genetic diversity and local extinctions of species. Understanding how best to manage landscapes that are fragmented is a key challenge. One of the most promising responses to fragmentation is to conserve or restore wildlife corridors, i.e. swaths of natural habitat between otherwise isolated habitat patches to facilitate dispersal, gene flow, and population rescue. Indeed, corridor creation is at the core of national (e.g. England's 25 Year Environment Plan) and international (e.g. the UN's Connectivity Conservation Project) environmental policies. Many conservation and environment agencies (e.g., Natural England, the USA's 22 Landscape Conservation Cooperatives) are designing - and public and private conservation investors are implementing - wildlife corridors. Huge sums of money in direct expenses and foregone development opportunities are being invested in corridors. However, we lack an understanding of if such corridors work. Most of what is known about corridor efficacy comes from experiments on model systems that do not resemble real-world wildlife corridors. New studies are needed to address the crucial questions: do corridors counter real-world fragmentation; and what corridor characteristics constrain effectiveness? To address these questions, we need to do fundamental research into the ecology of species' dispersal over large-scales and within complex, human-modified landscapes. Existing experiments on corridors study the effects of corridors less than 0.5km long and less than 0.4km wide, much smaller than corridors in the real world. Our objective in this project is assess corridor effectiveness in a number of human-modified landscapes. We will address major knowledge gaps about the characteristics of effective corridors by studying 4-6 focal species in each of 20 landscapes in Europe and the Americas. Each of these 20 landscapes contains three types of habitat configurations: isolated habitat patches, pairs of patches connected by a corridor, and a large intact natural area. The landscapes are ideal because they vary in corridor widths (0.2-3km) and lengths (1-25km), which resembles the large scales at which habitat fragmentation and corridors are design in reality. Using genetic methods to assess how a variety of mammal species move in these different habitat configurations, we will identify whether mammals are able to use corridors at these large scales and which corridor characteristics (e.g. length, width) most strongly influence success. We will assess where and how unsuccessful corridors fail. We will also use novel analysis of species characteristics, such as body size, dispersal ability, brain size and reproductive rate, to identify which types of species are most likely to benefit from corridors and determine whether different types of species might require different types of corridors. Finally, we will use our new data in ecological models to test a range of methods for planning wildlife corridors, which will make the project useful to conservation managers globally. Our project will deliver vital new information on how to make wildlife corridors successful for a large variety of species, will bring new understanding into species dispersal over very large scales, and will provide new methods for determining where to best invest resources for conservation.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5cc44fde75b556c45984a8d4abba57ba&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down