<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2c0e7d5b8ca24acd7b8a1a965cbf684b&type=result"></script>');
-->
</script>
Phenotyping photosynthetic characters from diverse lines of wheat will be combined with next generation genetic approaches to enable the identification of markers and genes associated with each trait. Such knowledge will enable combinations of these traits to be rapidly incorporated into elite wheat lines to increase yields based on improved photosynthetic efficiency. Moreover, identifying the genes and mutations responsible for the traits will provide an understanding of the biology underpinning the trait and the ability to use precision genome engineering tools in the future. The project will identify wheat material, develop markers and build bioinformatics tools. All of this will be made available to the international community via CIMMYT and iPlant. The project builds upon high throughput methods and knowledge developed by the wheat yield consortium and utilises exome capture technology to discover the relevant genetic information in a cost effective manner. The project combines the diverse expertise in photosynthesis, genetics, wheat physiology and breeding from Lancaster, Liverpool, ANU and CIMMYT and leverages off related existing research.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2c0e7d5b8ca24acd7b8a1a965cbf684b&type=result"></script>');
-->
</script>
Phenotyping photosynthetic characters from diverse lines of wheat will be combined with next generation genetic approaches to enable the identification of markers and genes associated with each trait. Such knowledge will enable combinations of these traits to be rapidly incorporated into elite wheat lines to increase yields based on improved photosynthetic efficiency. Moreover, identifying the genes and mutations responsible for the traits will provide an understanding of the biology underpinning the trait and the ability to use precision genome engineering tools in the future. The project will identify wheat material, develop markers and build bioinformatics tools. All of this will be made available to the international community via CIMMYT and iPlant. The project builds upon high throughput methods and knowledge developed by the wheat yield consortium and utilises exome capture technology to discover the relevant genetic information in a cost effective manner. The project combines the diverse expertise in photosynthesis, genetics, wheat physiology and breeding from Lancaster, Liverpool, ANU and CIMMYT and leverages off related existing research.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2c0e7d5b8ca24acd7b8a1a965cbf684b&type=result"></script>');
-->
</script>