Powered by OpenAIRE graph
Found an issue? Give us feedback

CO-HTL4BIO-OIL

Catalytic co-hydrothermal liquefaction of binary and ternary mixtures of rye straw, shellfish and beef tallow for sustainable production of high-grade biocrude-oil to drop-in transport fuel
Funder: European CommissionProject code: 895710 Call for proposal: H2020-MSCA-IF-2019
Funded under: H2020 | MSCA-IF-EF-ST Overall Budget: 207,312 EURFunder Contribution: 207,312 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
174
29

CO-HTL4BIO-OIL

Description

The transport sector is the highest consumer of fossil fuels accounting for 96% of the global energy, which correspond to 65% of the global crude oil consumption. The escalating consumption of fossil fuel causes deleterious environmental pollution by releasing > 7 billion tons of CO2 in the atmosphere. The awareness to transition from conventional fossil fuel to eco-friendly options has resulted in several decarbonization strategies with Europe’s priority to develop new alternative and carbon-neutral energy sources based on a cost-effective biomass-based thermochemical conversion. Hence, the objective of CO-HTL4BIO-OIL is to develop commercially viable catalytic co-hydrothermal liquefaction (CO-HTL) that converts 2G wet solid food by-products such as rye straw, shellfish, and beef tallow into a sustainable transport fuel with potential 100% atom efficiency, low production costs, and zero CO2 emissions. The specific experiments include: (1) identify proper pretreatment prior to CO-HTL for efficient removal of undesirable heteroatoms (2) validate baseline Lab-scale CO-HTL by determining integrated models of HTL parameters and proportions of binary/ternary mixtures; (3) establish efficient catalytic upgrading to bring the HTL intermediate bio-crude oil to drop-in transport fuel; (4) carry out bench-scale HTL for techno-economic assessment. It is anticipated that an in-depth study on the HTL parameters, optimization of the CO-HTL process, and techno-economic assessment will provide an outlook scenario of the industrial-scale process for high biofuels production capacity. Therefore, CO-HTL4BIO-OIL will diversify my scientific competences in renewable energy and equip me with new transferable skills. Thus, combining my skills in carbon-based biomaterials with the host’s expertise in advanced biofuels, a mutual benefit will be realized. The project will positively impact Europe’s knowledge-based economy and society towards sustainable and green transportation.

Partners
Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 174
    download downloads 29
  • 174
    views
    29
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e3fc3fdbf1b49ffb2bac7f7602cf2fa3&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down