Powered by OpenAIRE graph
Found an issue? Give us feedback

FACADE

FAçade bio-CArbon based anti UV coating to prevent DEterioration of wooden buildings
Funder: European CommissionProject code: 898179 Call for proposal: H2020-MSCA-IF-2019
Funded under: H2020 | MSCA-IF-EF-ST Overall Budget: 150,040 EURFunder Contribution: 150,040 EUR
Description

Façades play crucial roles in the building safety, comfort, and aesthetics. As an envelope for buildings, they are in constant interaction with outside environment. Ultraviolet (UV) solar radiation absorbed by lignin – constituting up to 40% of wood – initiates the weathering of wood. The weathering process induces colour changes, surface fibres to loosen and erode, allowing humidity to penetrate in depth in wood, and causing checks and a raised grain. It is therefore crucial to limit the weathering effects that can then lead to deterioration of wood by using coatings to protect its surface. UV absorbers enhance the durability of wood outdoors by absorbing incident radiation and by converting it into heat, which is then dissipated. Carbon-based materials are potential UV stabilizers thanks to combined effects of physical screen, UV absorbance, and radical trap. Bio-carbon is a carbon-based product obtained from thermal decomposition of organic materials at elevated temperatures. Organic materials can be wastes from the agricultural or forest industries, with currently little or no economic value. Bio-carbon presents a wide range of properties that can be tailored by the manufacturing process. To the best knowledge of the Experienced Researcher (ER), no prior research on using bio-carbon for UV stabilization has been reported. The FACADE project proposes to develop a competitive sustainable bio-sourced anti-UV coating to protect wooden façades, using bio-carbon as UV-stabilizer. The FACADE project tackles challenging concepts with innovative solutions and is expected to provide breakthroughs for advancing the use of bio-carbon in new applications and proving a fundamental understanding of the UV protection mechanisms of nanoscale carbon particles. Through the MSCA program activities, particularly mentoring young researchers, organizing events and managing projects, the ER will make a significant step in her career by gaining professional maturity and independence.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c9cfd5903c99a92b39d3be42fedaa525&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down