Powered by OpenAIRE graph
Found an issue? Give us feedback

Materials 4.0

Advancing materials design by high-accuracy finite-temperature first principles calculations accelerated by machine learning potentials
Funder: European CommissionProject code: 865855 Call for proposal: ERC-2019-COG
Funded under: H2020 | ERC | ERC-COG Overall Budget: 2,000,000 EURFunder Contribution: 2,000,000 EUR
Open Access mandate
Research data: No
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
29
88

Materials 4.0

Description

Phase diagrams have revolutionized materials development by providing the conditions for phase stabilities and transformations, and thereby a thorough thermodynamic understanding of materials design. However, the majority of today’s phase diagrams are based on scarce experimental input and often rely on daring extrapolations. Every multicomponent phase diagram relies on a fragile set of phase stabilities as very recent studies show. Materials 4.0 will change this. It will raise materials design to the next level by providing a highly accurate first principles thermodynamic database. First principles, alias ab initio, approaches do not require any experimental input and can operate where no experiment is able to reach. However, they have been limited to zero Kelvin or low temperature approximations which are not representative of phase diagrams. Materials 4.0 reaches far beyond this by utilizing my unique expertise in high-accuracy finite-temperature ab initio simulations. We will develop novel methods accelerated by machine learning potentials that facilitate a highly efficient determination of Gibbs free energies and migration barriers including all relevant finite-temperature excitation mechanisms. The methodology will be implemented in an easy-to-use open-source integrated development environment and made accessible to the community. Materials 4.0 will consider materials relevant to current scientific developments and of technological interest, such as hydrides, lightweight alloys, superalloys, MAX phases, and high entropy alloys. A large ab initio thermodynamic database will be computed for elements across the periodic table. The main focus will be on phase stabilities of various phases, including dynamically unstable ones, and importantly liquids as well; all fully from ab initio. The phase stabilities will be put into practice by re-parametrizing binary phase diagrams and studying the implications on multicomponent phase diagrams.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 29
    download downloads 88
  • 29
    views
    88
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::be8529cfd6e37c9f1d95a0e74476cf7c&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down