Powered by OpenAIRE graph
Found an issue? Give us feedback

eNeuroMus

Deciphering the impact of bioelectrical communication on human neuromuscular organoid maturation.
Funder: European CommissionProject code: 101149182 Call for proposal: HORIZON-MSCA-2023-PF-01
Funded under: HE | HORIZON-TMA-MSCA-PF-EF Funder Contribution: 173,847 EUR

eNeuroMus

Description

Stem cells and organoids have revolutionized our ability to build tissues and organ-like structures ‘in a dish’. Organoid models of a wide range of human tissues are increasingly applied to drug and treatment development and to fundamental and translational studies. However, the challenge of simultaneously growing more than one different tissues in a single functional organoid remains. Human neuromuscular organoids (NMOs) represent a landmark discovery toward building more complex and physiologically relevant human tissues in vitro. NMOs closely capture the cellular repertoire and structural and functional properties of the neuromuscular system, but, similar to other organoids, they do not reach adult tissue stages of maturation, at least in part, due to lack of connectivity and in vivo-like sensory inputs, including bioelectrical cues, essential in physiological phenomena. In a multi-disciplinary approach, the eNeuroMus project aims to test the hypothesis that delivery of brain-like input, currently excluded from NMO models, will enhance the complexity and maturation status of NMOs toward adult tissue stages. To this end, NMOs will be interfaced with conformable multielectrode arrays, based on organic conducting polymers, to expose NMOs to brain-like input via electrical stimulation and to record NMO electrophysiological activity in a growth stage-dependent manner. To decipher the effects of electrical stimulation on tissue maturation, electrophysiology assays will be combined with cutting-edge technologies, including spatial transcriptomics, optogenetics and advanced imaging. This analysis pipeline will result in a rich dataset, unravelling the long-term effects of electrical stimulation and the molecular pathways involved in the maturation of human neuromuscular organoids. Overall, the eNeuroMus project will deliver a novel and sophisticated framework for engineering the next generation of biohybrid organoids as tools for modelling human development and disease.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::432e1ab9de3e0e3c802cc71876ed9074&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down