Powered by OpenAIRE graph
Found an issue? Give us feedback

reaCtor

Fibre-based plasmonic micro reactor for flow chemistry
Funder: European CommissionProject code: 101099405 Call for proposal: HORIZON-EIC-2022-PATHFINDEROPEN-01
Funded under: HE | HORIZON-EIC\HORIZON-AG Overall Budget: 3,111,970 EURFunder Contribution: 3,111,970 EUR
Description

Major challenges of the European and worldwide society such as the climate crisis, insufficient environmental protection, food and pharmaceutical shortages, and military aggressions require technologies that substitute fossil fuels with sustainable energy sources in basically all industries. Following the green deal of the EU commission, the European continent shall become the first climate-neutral continent by 2050. The chemical industry is a major contributor to CO2 emissions, as it accounts for about 30% of the industry’s total energy use worldwide. Even though so-called photochemistry promises to sustainably produce chemical compounds by (sun)light, corresponding reactors suffer from insufficient light management, even in modern micro flow reactors, which hinders their upscaling to applications in industry. This is exactly where the key to the technological and economic breakthrough lies, and this is where reaCtor comes into play. It will contribute to the ambitious goal of a sustainable chemistry by developing and validating a novel type of light-driven chemical reactor with enormous scale-up potential for industrial applications. It will be based on an interdisciplinary and innovative technological approach, combining optical fibres for smart light management, metallic nanoparticles as efficient energy transmitters, nano- and micro-fabrication for micro-fluidic functionalization as well as monolithic optical integration, and flow chemistry as an eco-friendly and safe chemical technology. For the first time, a demonstrator of the novel reactor architecture will be set-up and benchmarked with relevant photochemical reactions. Ultimately, the proposed fibre-based microfluidic reactors will enable implementation of new and efficient routes driven by light to prepare pharmaceuticals, agrochemicals, and materials on both lab and industrial scales.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::059e46d46cd7bf94a4d95fe0c30669ad&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down