Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generative Adversial Network for Artificial ECG Generation

Authors: Šagát, Martin;

Generative Adversial Network for Artificial ECG Generation

Abstract

The work deals with the generation of ECG signals using generative adversarial networks (GAN). It examines in detail the basics of artificial neural networks and the principles of their operation. It theoretically describes the use and operation and the most common types of failures of generative adversarial networks. In this work, a general procedure of signal preprocessing suitable for GAN training was derived, which was used to compile a database. In this work, a total of 3 different GAN models were designed and implemented. The results of the models were visually displayed and analyzed in detail. Finally, the work comments on the achieved results and suggests further research direction of methods dealing with the generation of ECG signals.

Práca sa zaoberá generovaním EKG signálov pomocou generatívnych kompetitívnych sietí (GAN). Podrobne skúma základy umelých neurónových sietí a princípy ich fungovania. Teoreticky popisuje využitie a fungovanie a najčastejšie typy zlyhaní generatívnych kompetitívnych sietí. V práci bol odvodený všeobecný postup predspracovania signálov vhodných pre trénovanie GAN, ktorý bol využitý na zostavenie databázy. V tejto práci boli navrhnuté a implementované celkovo 3 rôzne modely GAN. Výsledky modelov boli vizuálne zobrazené a podrobne analyzované. Na záver práca komentuje dosiahnuté výsledky a navrhuje ďalšie smerovanie výskumu metód zaoberajúcich sa generovaním EKG signálov.

A

Country
Czech Republic
Related Organizations
Keywords

arytmie, Generative adversarial networks, ECG, umelé neurónové siete, neurón, signal generation, neuron, GAN, BiLSTM, EKG, Generatívne kompetitívne siete, generovanie signálov, artificial neural networks, arrhythmias, CNN, Python

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Neuroscience