Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Processing of User Reviews

Authors: Cihlářová, Dita;

Processing of User Reviews

Abstract

Velmi často lidé nakupují na internetu zboží, které si nemohou prohlédnout a vyzkoušet. Spoléhají se tedy na recenze ostatních zákazníků, ale těch už může být v dnešní době příliš mnoho na to, aby je člověk mohl sám rychle a pohodlně zpracovat. Cílem této práce je nabídnout aplikaci, která dokáže v českých recenzích rozpoznat, jaké vlastnosti produktu jsou nejvíce komentované a zda je vyznění komentářů pozitivní či negativní. Výsledky pak mohou ušetřit velké množství času zákazníkům e-shopů a poskytnout zajímavou zpětnou vazbu výrobcům prodávaných produktů.

Very often, people buy goods on the Internet that they can not see and try. They therefore rely on reviews of other customers. However, there may be too many reviews for a human to handle them quickly and comfortably. The aim of this work is to offer an application that can recognize in Czech reviews what features of a product are most commented and whether the commentary is positive or negative. The results can save a lot of time for e-shop customers and provide interesting feedback to the manufacturers of the products.

C

Country
Czech Republic
Related Organizations
Keywords

strojové učení, sumarizace textu, feature vector, NLTK, text summarization, analýza sentimentu, text mining, zpracování přirozeného jazyka, vektor příznaků, dolování v textu, Naive Bayes, machine learning, sentiment analysis, natural language processing, Maximum Entropy, text preprocessing, předzpracování textu

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities