25 references, page 1 of 2

[1] S. Basu and C. Riener. On the isotypic decomposition of cohomology modules of symmetric semi-algebraic sets: polynomial bounds on multiplicities. International Mathematics Research Notices, to appear. 1

[2] G. Blekherman and C. Riener. Symmetric nonnegative forms and sums of squares. arXiv preprint arXiv:1205.3102, 2012. 10, 11 [OpenAIRE]

[3] T. Brylawski. The lattice of integer partitions. Discrete mathematics, 6(3):201{219, 1973. 4

[4] L. Bus and A. Karasoulou. Resultant of an equivariant polynomial system with respect to the symmetric group. Journal of Symbolic Computation, 76:142 { 157, 2016. 1 [OpenAIRE]

[5] T. Church, J. S. Ellenberg, B. Farb, et al. Fi-modules and stability for representations of symmetric groups. Duke Mathematical Journal, 164(9):1833{1910, 2015. 10

[6] J.-C. Faugere and J. Svartz. Solving polynomial systems globally invariant under an action of the symmetric group and application to the equilibria of n vortices in the plane. In Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, pages 170{ 178. ACM, 2012. 1

[7] R. Froberg and B. Shapiro. On vandermonde varieties. Math. Scand, 119(1):7391, 2016. 4

[8] C. Goel, S. Kuhlmann, and B. Reznick. On the choi{lam analogue of hilbert's 1888 theorem for symmetric forms. Linear Algebra and its Applications, 496:114{120, 2016. 10

[9] D. Jibetean and M. Laurent. Semide nite approximations for global unconstrained polynomial optimization. SIAM Journal on Optimization, 16(2):490{514, 2005. Pagination: 25. 11 [OpenAIRE]

[10] R. Krone. Equivariant grobner bases of symmetric toric ideals. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 311{318. ACM, 2016. 1

[11] A. Kurpisz, S. Leppanen, and M. Mastrolilli. Sum-of-squares hierarchy lower bounds for symmetric formulations. In International Conference on Integer Programming and Combinatorial Optimization, pages 362{374. Springer, 2016. 10

[12] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on optimization, 11(3):796{817, 2001. 10

[13] U. Nagel and T. Romer. Equivariant hilbert series in non-noetherian polynomial rings. Journal of Algebra, 486:204{245, 2017. 9

[14] J. Nie, J. Demmel, and B. Sturmfels. Minimizing polynomials via sum of squares over the gradient ideal. Mathematical Programming, 106(3):587{606, May 2006. 11

[15] A. Raymond, M. Singh, and R. R. Thomas. Symmetry in turan sums of squares polynomials from ag algebras. Algebraic Combinatorics, 1(2):249{274, 2018. 10

25 references, page 1 of 2