<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recently proposed tractography and connectomics approaches often require a very large number of streamlines, in the order of millions. Generating, storing and interacting with these datasets is currently quite difficult, since they require a lot of space in memory and processing time. Compression is a common approach to reduce data size. Recently such an approach has been proposed consisting in removing collinear points in the streamlines. Removing points from streamlines results in files that cannot be robustly post-processed and interacted with existing tools, which are for the most part point-based. The aim of this work is to improve visualization, interaction and tractometry algorithms to robustly handle compressed tractography datasets. Our proposed improvements are threefold: (i) An efficient loading procedure to improve visualization (reduce memory usage up to 95% for a 0.2 mm step size); (ii) interaction techniques robust to compressed tractograms; (iii) tractometry techniques robust to compressed tractograms to eliminate biased in tract-based statistics. The present work demonstrates the need of correctly handling compressed streamlines to avoid biases in future tractometry and connectomics studies.
diffusion MRI, tractometry, tractography, linearization, connectomics, compression, MI-Brain, Neuroscience, streamlines
diffusion MRI, tractometry, tractography, linearization, connectomics, compression, MI-Brain, Neuroscience, streamlines
Amanatides J. Woo A. (1987). A fast voxel traversal algorithm for ray tracing, in In Eurographics (Amsterdam), 87, 3–10.
Bresenham J. E. (1965). Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 25–30. 10.1147/sj.41.0025 [OpenAIRE] [DOI]
Calamante F. Smith R. E. Tournier J.-D. Raffelt D. Connelly A. (2015). Quantification of voxel-wise total fibre density: investigating the problems associated with track-count mapping. Neuroimage 117, 284–293. 10.1016/j.neuroimage.2015.05.070 26037054 [OpenAIRE] [PubMed] [DOI]
Calamante F. Tournier J. D. Ja ckson G. D. Connelly A. (2010). Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage. 53, 1233–1243. 10.1016/j.neuroimage.2010.07.024 20643215 [OpenAIRE] [PubMed] [DOI]
Catani M. (2005). The rises and falls of disconnection syndromes. Brain 128, 2224–2239. 10.1093/brain/awh622 16141282 [OpenAIRE] [PubMed] [DOI]
Catani M. de Schotten M. T. (2012). Atlas of Human Brain Connections. Oxford: Oxford University Press.
Catani M. Howard R. J. Pajevic S. Jones D. K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17, 77–94. 10.1006/nimg.2002.1136 12482069 [OpenAIRE] [PubMed] [DOI]
Catani M. Thiebaut de Schotten M. Slater D. Dell'Acqua F. (2013). Connectomic approaches before the connectome. Neuroimage 80, 2–13. 10.1016/j.neuroimage.2013.05.109 23735262 [OpenAIRE] [PubMed] [DOI]
Chamberland M. Whittingstall K. Fortin D. Mathieu D. Descoteaux M. (2014). Real-time multi-peak tractography for instantaneous connectivity display. Front. Neuroinformatics 8:59. 10.3389/fninf.2014.00059 24910610 [OpenAIRE] [PubMed] [DOI]
Chekir A. Descoteaux M. Garyfallidis E. Cote M.-A. Boumghar F. O. (2014). A hybrid approach for optimal automatic segmentation of White Matter tracts in HARDI, in Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on (Kuala Lumpur), 177–180.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doi_dedup___::959d85f1a85eabed801cce13ef75e5d8&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doi_dedup___::959d85f1a85eabed801cce13ef75e5d8&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::60b09c92e2b1e0ad9ddbf31833681d08&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::60b09c92e2b1e0ad9ddbf31833681d08&type=result"></script>');
-->
</script>
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |