• shareshare
  • link
  • cite
  • add
Other research product . 2022

Impact of instrumental line shape characterization on ozone monitoring by FTIR spectrometry

García, Omaira E.; Sanromá, Esther; Hase, Frank; Schneider, Matthias; León-Luis, Sergio Fabián; Blumenstock, Thomas; Sepúlveda, Eliezer; +4 Authors
Open Access
Published: 11 Aug 2022

Retrieving high-precision concentrations of atmospheric trace gases from FTIR (Fourier transform infrared) spectrometry requires a precise knowledge of the instrumental performance. In this context, this paper examines the impact on the ozone (O3) retrievals of several approaches used to characterize the instrumental line shape (ILS) function of ground-based FTIR spectrometers within NDACC (Network for the Detection of Atmospheric Composition Change). The analysis has been carried out at the subtropical Izaña Observatory (IZO, Spain) by using the 20-year time series of the high-resolution FTIR solar absorption spectra acquired between 1999 and 2018. The theoretical quality assessment and the comparison to independent O3 observations available at IZO (Brewer O3 total columns and electrochemical concentration cell, ECC, sondes) reveal consistent findings. The inclusion of a simultaneous retrieval of the ILS parameters in the O3 retrieval strategy allows, on the one hand, a rough instrumental characterization to be obtained and, on the other hand, the precision of the FTIR O3 products to be slightly improved. The improvement is of special relevance above the lower stratosphere, where the cross-interference between the O3 vertical distribution and the instrumental performance is more significant. However, it has been found that the simultaneous ILS retrieval leads to a misinterpretation of the O3 variations on daily and seasonal scales. Therefore, in order to ensure the independence of the O3 retrievals and the instrumental response, the optimal approach to deal with the FTIR instrumental characterization is found to be the continuous monitoring of the ILS function by means of independent observations, such as gas cell measurements.

Funded by
Multi-platform remote sensing of isotopologues for investigating the cycle of atmospheric water
  • Funder: European Commission (EC)
  • Project Code: 256961
  • Funding stream: FP7 | SP2 | ERC