Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hydrology and Earth ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Copernicus Publications
Other ORP type . 2019
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment

Authors: Andrianaki, Maria; Shrestha, Juna; Kobierska, Florian; Nikolaidis, Nikolaos P.; Bernasconi, Stefano M.;

Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment

Abstract

In this study, we investigated the application and the transferability of the Soil Water and Assessment Tool (SWAT) in a partly glacierized Alpine catchment characterized by extreme climatic conditions and steep terrain. The model was initially calibrated for the 10 km2 watershed of the Damma glacier Critical Zone Observatory (CZO) in central Switzerland using monitoring data for the period of 2009–2011 and then was evaluated for 2012–2013 in the same area. Model performance was found to be satisfactory against both the Nash–Sutcliffe criterion (NS) and a benchmark efficiency (BE). The transferability of the model was assessed by using the parameters calibrated on the small watershed and applying the model to the approximately 100 km2 catchment that drains into the hydropower reservoir of the Göscheneralpsee and includes the Damma glacier CZO. Model results were compared to the reservoir inflow data from 1997 to 2010 and it was found that the model predicted successfully snowmelt timing and autumn recession but could not accurately capture the peak flow for certain years. Runoff was slightly overestimated from late May to June, when it is dominated by snowmelt. Finally, we investigated the response of the greater catchment to climate change using three different climate change scenarios, and the results were compared to those of a previous study, where two different hydrological models, PREVAH and ALPINE3D, were used. The methodology presented here, where SWAT is calibrated for a small watershed and then applied for a bigger area with similar climatic conditions and geographical characteristics, could work even under extreme conditions like ours. However, greater attention should be given to the differences between glacier melt and snowmelt dynamics. In conclusion, this assessment test on the transferability of SWAT on different scales gave valuable information about the strengths and weaknesses of the model when it was applied under conditions different to those under which it was calibrated.

51 references, page 1 of 6

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333, 413-430, https://doi.org/10.1016/j.jhydrol.2006.09.014, 2007.

Ahl, R. S., Woods, S. W., and Zuuring, H. R.: Hydrologic Calibration and Validation of SWAT in a Snow-Dominated Rocky Mountain Watershed, Montana, U.S.A., J. Am. Water Resour. As., 44, 1411-1430, https://doi.org/10.1111/j.1752- 1688.2008.00233.x, 2008.

Aili, T., Soncini, A., Bianchi, A., Diolaiuti, G., D'Agata, C., Bocchiola, D. J. T., and Climatology, A.: Assessing water resources under climate change in high-altitude catchments: a methodology and an application in the Italian Alps, Theor. Appl. Climatol., 135, 135-156, https://doi.org/10.1007/s00704-017-2366-4, 2019.

Andrianaki, M., Bernasconi, S. M., and Nikolaidis, N. P.: Chapter Eight - Quantifying the Incipient Development of Soil Structure and Functions Within a Glacial Forefield Chronosequence, in: Advances in Agronomy, edited by: Steven, A. B. and Donald, L. S., Academic Press, 215-239, 2017.

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment - Part 1: Model development, J. Am. Water Resour. As., 34, 73-89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.

Banwart, S., Bernasconi, S. M., Bloem, J., Blum, W., Brandao, M., Brantley, S., Chabaux, F., Duffy, C., Kram, P., Lair, G., Lundin, L., Nikolaidis, N., Novak, M., Panagos, P., Ragnarsdottir, K. V., Reynolds, B., Rousseva, S., de Ruiter, P., van Gaans, P., van Riemsdijk, W., White, T., and Zhang, B.: Soil Processes and Functions in Critical Zone Observatories: Hypotheses and Experimental Design, Vadose Zone J., 10, 974-987, https://doi.org/10.2136/vzj2010.0136, 2011.

Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol. Earth Syst. Sci., 11, 703-710, https://doi.org/10.5194/hess-11-703-2007, 2007. [OpenAIRE]

Bavay, M., Grünewald, T., and Lehning, M.: Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland, Adv. Water Resour., 55, 4-16, https://doi.org/10.1016/j.advwatres.2012.12.009, 2013.

Bernasconi, S. M., Christl, I., Hajdas, I., Zimmermann, S., Hagedorn, F., Smittenberg, R. H., Furrer, G., Zeyer, J., Brunner, I., Frey, B., Plotze, M., Lapanje, A., Edwards, P., Venterink, H. O., Goransson, H., Frossard, E., Bunemann, E., Jansa, J., Tamburini, F., Welc, M., Mitchell, E., Bourdon, B., Kretzschmar, R., Reynolds, B., Lemarchand, E., Wiederhold, J., Tipper, E., Kiczka, M., Hindshaw, R., Stahli, M., Jonas, T., Magnusson, J., Bauder, A., Farinotti, D., Huss, M., Wacker, L., Abbaspour, K., and Biglink Project, M.: Weathering, soil formation and initial ecosystem evolution on a glacier forefield: a case study from the Damma Glacier, Switzerland, Mineral. Mag., 72, 19-22, https://doi.org/10.1180/minmag.2008.072.1.19, 2008.

Bernasconi, S. M., Bauder, A., Bourdon, B., Brunner, I., Bunemann, E., Christl, I., Derungs, N., Edwards, P., Farinotti, D., Frey, B., Frossard, E., Furrer, G., Gierga, M., Goransson, H., Gulland, K., Hagedorn, F., Hajdas, I., Hindshaw, R., Ivy-Ochs, S., Jansa, J., Jonas, T., Kiczka, M., Kretzschmar, R., Lemarchand, E., Luster, J., Magnusson, J., Mitchell, E. A. D., Venterink, H. O., Plotze, M., Reynolds, B., Smittenberg, R. H., Stahli, M., Tamburini, F., Tipper, E. T., Wacker, L., Welc, M., Wiederhold, J. G., Zeyer, J., Zimmermann, S., and Zumsteg, A.: Chemical and Biological Gradients along the Damma Glacier Soil Chronosequence, Switzerland, Vadose Zone J., 10, 867-883, https://doi.org/10.2136/vzj2010.0129, 2011.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by